Limits of Sequences: A Strategy Guide

With six methods for investigating the convergence or divergence of a sequence $\{a_i\}$, it's easy to lose track of when each one is relevant and how they are applied. This short summary is designed to be an at-a-glance guide to each approach.

- 1. Basic limit properties and familiar sequences
 - **Basic Idea:** If a_i consists of common sequences (such as *p*-sequences or geometric sequences) or other expressions whose limits are obvious, we can evaluate the limit directly
 - Typical Example: $\lim_{i \to \infty} \frac{2^i + 5}{6^i 4^i}$
 - Demonstrates Convergence or Divergence or Both? Both
 - Compute the Limit if Convergent? Yes
 - **Potential Pitfall:** Remember that the basic limit properties only apply to convergent sequences. For example, we cannot write

$$\lim_{i \to \infty} \frac{(-1)^i}{i} = \left[\lim_{i \to \infty} (-1)^i\right] \cdot \left[\lim_{i \to \infty} \frac{1}{i}\right]$$

because $\lim_{i \to \infty} (-1)^i$ does not exist.

- 2. Rewriting sequences
 - **Basic Idea:** Sometimes a_i is not given in terms of familiar expressions but can be rewritten as such
 - Typical Example: $\lim_{i \to \infty} \frac{\sin(2i)}{i \sin(i) \cos(i)}$
 - Demonstrates Convergence or Divergence or Both? Both
 - Compute the Limit if Convergent? Yes
 - **Potential Pitfall:** See Method #1
- 3. The Evaluation Theorem and l'Hôpital's Rule
 - Basic Idea: We cannot apply l'Hôpital's Rule directly to $\lim_{i\to\infty} a_i$ but we can apply it to $\lim_{x\to\infty} f(x)$ where $f(i) = a_i$
 - Typical Example: $\lim_{i \to \infty} \frac{\ln(i)}{i}$
 - Demonstrates Convergence or Divergence or Both? Convergence only (exceptions exist, but we did not cover them)
 - Compute the Limit if Convergent? Yes
 - Potential Pitfall: If l'Hôpital's Rule shows that $\lim_{x\to\infty} f(x)$ does not exist, we cannot conclude that $\{a_i\}$ is divergent (although this may be true)

- 4. The Squeeze Theorem
 - **Basic Idea:** We find two sequences $\{b_i\}$ and $\{c_i\}$ with the same limit and for which $c_i \leq a_i \leq b_i$
 - Typical Example: $\lim_{i \to \infty} \frac{\sin(i)}{i}$
 - Demonstrates Convergence or Divergence or Both? Convergence only (exceptions exist, but we did not cover them)
 - Compute the Limit if Convergent? Yes
 - Potential Pitfall: Both parts of the Squeeze Theorem must hold, which can make identifying appropriate sequences $\{b_i\}$ and $\{c_i\}$ very challenging

5. The Absolute Sequence Theorem

- Basic Idea: If we can show that $\lim_{i\to\infty} |a_i| = 0$ then $\lim_{i\to\infty} a_i = 0$ as well
- Typical Example: $\lim_{i \to \infty} (-1)^i \frac{1}{i}$
- Demonstrates Convergence or Divergence or Both? Convergence only (but see Potential Pitfall below)
- Compute the Limit if Convergent? Yes
- Potential Pitfall: The Absolute Sequence Theorem does not apply if $\lim_{i\to\infty} |a_i| \neq 0$, but we can sometimes use this result to argue why $\{a_i\}$ must diverge
- 6. The Bounded Monotonic Sequence Theorem (BMST)
 - **Basic Idea:** We show that $\{a_i\}$ is monotonic (or has a monotonic tail) and is bounded
 - Typical Example: $\lim_{i \to \infty} \frac{2^i}{i!}$
 - Demonstrates Convergence or Divergence or Both? Convergence only
 - Compute the Limit if Convergent? No
 - **Potential Pitfall:** The BMST can tell us that a sequence is convergent, but cannot be used to determine the value of the limit