MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4

MATH 2000

 $Fall \ 2018$

Due: Wednesday, October 17th, 2018 by 2:00pm. SHOW ALL WORK.

Note: You should complete the worksheets for Sections 1.3 (questions 1 to 4) and 2.4 before you work on this assignment.

1. Determine whether each of the following series is convergent or divergent by either finding a formula for its nth partial sum or using the Divergence Test. If the series is convergent, find its sum.

(a)
$$\sum_{i=1}^{\infty} \frac{i^3 - 3}{3i^3 - i}$$

(b)
$$\sum_{i=2}^{\infty} \frac{i - 3}{i^3 - i}$$

(c)
$$\sum_{i=1}^{\infty} \sqrt[4]{i}$$

(d)
$$\sum_{i=1}^{\infty} \ln\left(\frac{2i - 1}{3i + 1}\right)$$

(e)
$$\sum_{i=1}^{\infty} \ln\left(\frac{2i - 1}{2i + 1}\right)$$

- 2. Use the Chain Rule to find $\frac{dz}{dt}$, given $z = \sin(x)\cos(y)$, $x = \ln(t)$, $y = \sqrt{t}$.
- 3. Use the Chain Rule to find f_x , f_y and f_z , given $f(\alpha, \beta) = \sqrt{\alpha^2 \beta^2}$, $\alpha = x \tan(y)$, $\beta = \frac{x^3}{y+3z}$.
- 4. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, given

$$x^{2}y + y^{3}z^{2} - z^{4}x^{3} = xe^{y}\cosh(z).$$