MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4
MATH 2000
FALL 2018

Due: Wednesday, October 17th, 2018 by 2:00pm. SHOW ALL WORK.
Note: You should complete the worksheets for Sections 1.3 (questions 1 to 4) and 2.4 before you work on this assignment.

1. Determine whether each of the following series is convergent or divergent by either finding a formula for its nth partial sum or using the Divergence Test. If the series is convergent, find its sum.
(a) $\sum_{i=1}^{\infty} \frac{i^{3}-3}{3 i^{3}-i}$
(b) $\sum_{i=2}^{\infty} \frac{i-3}{i^{3}-i}$
(c) $\sum_{i=1}^{\infty} \sqrt[i]{i}$
(d) $\sum_{i=1}^{\infty} \ln \left(\frac{2 i-1}{3 i+1}\right)$
(e) $\sum_{i=1}^{\infty} \ln \left(\frac{2 i-1}{2 i+1}\right)$
2. Use the Chain Rule to find $\frac{d z}{d t}$, given $z=\sin (x) \cos (y), x=\ln (t), y=\sqrt{t}$.
3. Use the Chain Rule to find f_{x}, f_{y} and f_{z}, given $f(\alpha, \beta)=\sqrt{\alpha^{2}-\beta^{2}}, \alpha=x \tan (y), \beta=$ $\frac{x^{3}}{y+3 z}$.
4. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, given

$$
x^{2} y+y^{3} z^{2}-z^{4} x^{3}=x e^{y} \cosh (z)
$$

