Please remember that each final exam is different, and the style and emphasis of the questions will vary from semester to semester.
[4] 1. Find the limit of the sequence $\left\{a_{i}\right\}=\left\{\left(1-\frac{5}{i}\right)^{i}\right\}$ or explain why it does not exist.
2. Find the sum of each of the following convergent series.
[3]
(a) $\sum_{i=0}^{\infty} \frac{3^{i-2}}{4^{2 i}}$
(b) $\sum_{i=1}^{\infty} \frac{1}{i^{2}+15 i+56}$
[5] 3. Use the Integral Test to determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{\ln (i)}{i^{2}}$. Remember to verify the conditions of the Integral Test.
4. Use an appropriate test to determine the convergence or divergence of the following series. Identify the tests used.
[4] (a) $\sum_{i=1}^{\infty} \frac{e^{3 i}\left(\frac{i+5}{i}\right)^{i}}{i^{2}}$
[4]
(b) $\sum_{i=1}^{\infty} \frac{\cos ^{2}\left(i^{3}+1\right)}{3^{i}}$
[4]
(c) $\sum_{i=0}^{\infty}(-1)^{i} \frac{1 \cdot 4 \cdot 7 \cdots(3 i+1)}{5^{i} i!}$
[7] 5. Determine whether the series $\sum_{i=1}^{\infty} \frac{(-1)^{i}}{4 i+3}$ converges absolutely, converges conditionally, or diverges. Justify your answer.
[7] 6. Find the interval of convergence of the power series $\sum_{i=1}^{\infty} \frac{i}{5^{i}\left(i^{2}+2\right)}(x+3)^{i}$.
[4] 7. Use the definition to find the first four non-zero terms of the Taylor polynomial, centered at $x=1$, for $f(x)=e^{2 x}$.
[4]
8. (a) Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2} y}{2 x^{4}+3 y^{2}}$ or show that the limit does not exist.
(b) Show that the function $z=\sin (x-k t)+\cos (x+k t)$, where k is a constant, satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial t^{2}}=k^{2} \frac{\partial^{2} z}{\partial x^{2}} \tag{6}
\end{equation*}
$$

[6]
9. (a) Given $w=x^{2}-y^{2}+z^{2}$ where $x=t^{2}+s^{2}, y=t^{2}-s^{2}$ and $z=s t$, use the Chain Rule to find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$.
[5]
(b) The equation $x e^{y}+y^{2} \ln (x)+z^{2} y=8 z$ defines z implicitly as a function of x and y. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
[7]
10. Find any critical points and then use the Second Derivatives Test to determine any local extrema or saddle points of the function $f(x, y)=\frac{x^{3}}{3}+y^{2}+2 x y-6 x-3 y+5$.
11. Use a double integral to find the area of D in each case.
[5] (a) D is the region bounded by the curves $x-y^{2}-1=0$ and $x-4 y-6=0$
[7] 12. Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{1+x^{3}} d x d y$ by reversing the order of integration. Sketch the region of integration.
[7] 13. Use polar coordinates to evaluate $\iint_{R} e^{-3\left(x^{2}+y^{2}\right)} d A$ where R is the region in the first quadrant bounded by the lines $y=0, x=0$, and the circle $x^{2}+y^{2}=3$.

