For practise only. Not to be submitted.

1. Find $(f \circ g)(x)$ and $(g \circ f)(x)$ if $f(x)=3 x-5$ and $g(x)=x^{2}+2 x+1$.
2. Find $(f \circ g)(x)$ and the domain of $f \circ g$ given $f(x)=5 x^{2}+3$ and $g(x)=\sqrt{2 x-1}$.
3. For each of the following functions F, find two non-trivial functions f and g such that $F(x)=(f \circ g)(x)$.
(a) $F(x)=\sqrt{3 x^{3}-5}$
(b) $\quad F(x)=\frac{4}{(1-5 x)^{3}}$
4. For each of the following one-to-one functions, find their inverse $f^{-1}(x)$ and give the domain and range of $f^{-1}(x)$.
(a) $\quad f(x)=\frac{1}{3} x+2$
(b) $f(x)=\sqrt{x}-3$
(c) $f(x)=2 \sqrt{x+1}$
5. Using your results from Question 4, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ on the same axes, for the following two functions.
(a) $\quad f(x)=\frac{1}{3} x+2$
(b) $f(x)=\sqrt{x}-3$
6. Consider the function $f(x)=x^{2}+4$.
(a) Show that $f(x)$ is not one-to-one by finding two values $x=a$ and $x=b$ such that $f(a)=f(b)$.
(b) The function $f(x)$ is one-to-one if we restrict the domain to $x \geq 0$. Find its inverse $f^{-1}(x)$ and the domain and range of $f^{-1}(x)$.
(c) The function $f(x)$ is also one-to-one if we restrict the domain to $x \leq 0$. Find its inverse $f^{-1}(x)$ and the domain and range of $f^{-1}(x)$.
