MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

For practise only. Not to be submitted.

- 1. Find $(f \circ g)(x)$ and $(g \circ f)(x)$ if f(x) = 3x 5 and $g(x) = x^2 + 2x + 1$.
- 2. Find $(f \circ g)(x)$ and the domain of $f \circ g$ given $f(x) = 5x^2 + 3$ and $g(x) = \sqrt{2x 1}$.
- 3. For each of the following functions F, find two non-trivial functions f and g such that $F(x) = (f \circ g)(x)$.

(a)
$$F(x) = \sqrt{3x^3 - 5}$$
 (b) $F(x) = \frac{4}{(1 - 5x)^3}$

- 4. For each of the following one-to-one functions, find their inverse $f^{-1}(x)$ and give the domain and range of $f^{-1}(x)$.
 - (a) $f(x) = \frac{1}{3}x + 2$ (b) $f(x) = \sqrt{x} - 3$ (c) $f(x) = 2\sqrt{x+1}$
- 5. Using your results from Question 4, sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same axes, for the following two functions.

(a)
$$f(x) = \frac{1}{3}x + 2$$
 (b) $f(x) = \sqrt{x} - 3$

- 6. Consider the function $f(x) = x^2 + 4$.
 - (a) Show that f(x) is not one-to-one by finding two values x = a and x = b such that f(a) = f(b).
 - (b) The function f(x) is one-to-one if we restrict the domain to $x \ge 0$. Find its inverse $f^{-1}(x)$ and the domain and range of $f^{-1}(x)$.
 - (c) The function f(x) is also one-to-one if we restrict the domain to $x \leq 0$. Find its inverse $f^{-1}(x)$ and the domain and range of $f^{-1}(x)$.