MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

For practise only. Not to be submitted.

1. Use the sum, difference, double- or half-angle formulas to find the exact value of the each of the following.
(a) $\sin \left(315^{\circ}\right)$
(b) $\cos \left(\frac{17 \pi}{12}\right)$
(c) $\cos \left(\frac{3 \pi}{8}\right)$
2. If $\tan (\alpha)=\frac{3}{4}$ for α in the third quadrant, and $\sin (\beta)=-\frac{5}{13}$ for β in the fourth quadrant, find each of the following.
(a) $\sin (\alpha+\beta)$
(b) $\sin (\alpha-\beta)$
(c) $\cos (\alpha+\beta)$
(d) $\cos (\alpha-\beta)$
(e) $\cos \left(\alpha+\frac{\pi}{3}\right)$
(f) $\sin (2 \alpha)$
(g) $\cos (2 \alpha)$
(h) $\sin \left(\frac{1}{2} \beta\right)$
(i) $\cos \left(\frac{1}{2} \beta\right)$
3. Using the information derived in $\# 2(a)-(d)$, identify the quadrant in which the following angles can be found.
(a) $\alpha+\beta$
(b) $\alpha-\beta$
4. Verify each of the following trigonometric identities.
(a) $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{1-\tan (\alpha) \tan (\beta)}{1+\tan (\alpha) \tan (\beta)}$
(b) $\cos ^{2}\left(\frac{x}{2}\right)=\frac{\sec (x)+1}{2 \sec (x)}$
(c) $\sin (2 t)-\tan (t)=\tan (t) \cos (2 t)$
5. Find all solutions of the following equations, such that $0 \leq x<2 \pi$.
(a) $\sin (x)=1-\cos (2 x)$
(b) $\sin (2 x)+2 \cos ^{2}(x)=0$
