MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

<u>G</u>		$\mathbf{D}_{1} = 0$
Section 3.6	Math 1090 Worksheet	Fall 2009

For practise only. Not to be submitted.

- 1. Use the sum, difference, double- or half-angle formulas to find the exact value of the each of the following.
 - (b) $\cos\left(\frac{17\pi}{12}\right)$ (c) $\cos\left(\frac{3\pi}{8}\right)$ (a) $\sin(315^{\circ})$
- 2. If $\tan(\alpha) = \frac{3}{4}$ for α in the third quadrant, and $\sin(\beta) = -\frac{5}{13}$ for β in the fourth quadrant, find each of the following.
 - (c) $\cos(\alpha + \beta)$ (f) $\sin(2\alpha)$ (b) $\sin(\alpha - \beta)$ (e) $\cos\left(\alpha + \frac{\pi}{3}\right)$ (h) $\sin(\frac{1}{2}\beta)$ $\sin(\alpha + \beta)$ (a)
 - (d) $\cos(\alpha \beta)$
 - (i) $\cos(2\alpha)$ (g)

3. Using the information derived in #2(a)-(d), identify the quadrant in which the following angles can be found.

- (a) $\alpha + \beta$ (b) $\alpha - \beta$
- 4. Verify each of the following trigonometric identities.
 - (a) $\frac{\cos(\alpha + \beta)}{\cos(\alpha \beta)} = \frac{1 \tan(\alpha)\tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$ (b) $\cos^2\left(\frac{x}{2}\right) = \frac{\sec(x) + 1}{2\sec(x)}$

(c)
$$\sin(2t) - \tan(t) = \tan(t)\cos(2t)$$

- 5. Find all solutions of the following equations, such that $0 \le x < 2\pi$.
 - (b) $\sin(2x) + 2\cos^2(x) = 0$ (a) $\sin(x) = 1 - \cos(2x)$