MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) $\frac{3 x+9}{x^{2}-1} \cdot \frac{x+1}{2 x^{2}+5 x-3}=\frac{3(x+3)}{(x-1)(x+1)} \cdot \frac{x+1}{(2 x-1)(x+3)}=\frac{3}{(x-1)(2 x-1)}$
(b) $\frac{2}{2 x-5}+\frac{1}{x+1}=\frac{2(x+1)}{(2 x-5)(x+1)}+\frac{1(2 x-5)}{(x+1)(2 x-5)}=\frac{2 x+2+2 x-5}{(2 x-5)(x+1)}$

$$
=\frac{4 x-3}{(2 x-5)(x+1)}
$$

(c) $\frac{1}{9-x^{2}}+\frac{1}{x-3}=\frac{1}{-(x-3)(x+3)}+\frac{1}{x-3}=\frac{-1}{(x-3)(x+3)}+\frac{1(x+3)}{(x-3)(x+3)}$

$$
=\frac{-1+x+3}{(x-3)(x+3)}=\frac{x+2}{(x-3)(x+3)}
$$

(d) $\frac{x-2}{x-4}-\frac{x+3}{x^{2}-2 x-8}=\frac{x-2}{x-4}-\frac{x+3}{(x-4)(x+2)}=\frac{(x-2)(x+2)}{(x-4)(x+2)}-\frac{x+3}{(x-4)(x+2)}$

$$
=\frac{x^{2}-4-x-3}{(x-4)(x+2)}=\frac{x^{2}-x-7}{(x-4)(x+2)}
$$

(e) $\frac{\frac{2}{x+2}-1}{1-\frac{3}{x+3}}=\frac{\frac{2}{x+2}-\frac{x+2}{x+2}}{\frac{x+3}{x+3}-\frac{3}{x+3}}=\frac{\frac{2-x-2}{x+2}}{\frac{x+3-3}{x+3}}=\frac{\frac{-x}{x+2}}{\frac{x}{x+3}}=\frac{-x}{x+2} \cdot \frac{x+3}{x}=\frac{-(x+3)}{x+2}$
(f) $x(x-4)^{-2}+3(x-4)^{-1}=\frac{x}{(x-4)^{2}}+\frac{3}{x-4}=\frac{x}{(x-4)^{2}}+\frac{3(x-4)}{(x-4)^{2}}$

$$
=\frac{x+3 x-12}{(x-4)^{2}}=\frac{4(x-3)}{(x-4)^{2}}
$$

2. (a) First observe that

$$
\begin{aligned}
\frac{2}{x-5}+\frac{1}{x+5} & =\frac{5 x-5}{x^{2}-25} \\
\frac{2(x+5)}{(x-5)(x+5)}+\frac{1(x-5)}{(x-5)(x+5)} & =\frac{5 x-5}{(x-5)(x+5)} \\
2 x+10+x-5 & =5 x-5 \\
-2 x & =-10 \\
x & =5 .
\end{aligned}
$$

However, $x=5$ fails upon substitution into the original equation (it results in division by zero) so this equation has no solutions.
(b) This time we have

$$
\begin{aligned}
\frac{2}{x-5}+\frac{1}{x+5} & =\frac{5 x-1}{x^{2}-25} \\
\frac{2(x+5)}{(x-5)(x+5)}+\frac{1(x-5)}{(x-5)(x+5)} & =\frac{5 x-1}{(x-5)(x+5)} \\
2 x+10+x-5 & =5 x-1 \\
-2 x & =-6 \\
x & =3 .
\end{aligned}
$$

This value of x works upon substitution into the original equation, and so $x=3$ is the only solution.
(c) We have

$$
\begin{aligned}
\frac{1}{x}+\frac{1}{x-6} & =-\frac{2}{x^{2}} \\
\frac{x(x-6)}{x^{2}(x-6)}+\frac{x^{2}}{x^{2}(x-6)} & =-\frac{2(x-6)}{x^{2}(x-6)} \\
x^{2}-6 x+x^{2} & =-2 x+12 \\
2 x^{2}-4 x-12 & =0 \\
x^{2}-2 x-6 & =0 .
\end{aligned}
$$

Since this trinomial is irreducible, we use the quadratic formula and see that

$$
x=\frac{2 \pm \sqrt{2^{2}-4(1)(-6)}}{2(1)}=\frac{2 \pm \sqrt{28}}{2}=\frac{2 \pm 2 \sqrt{7}}{2}=1 \pm \sqrt{7} .
$$

Thus the equation has two solutions: $x=1+\sqrt{7}$ and $x=1-\sqrt{7}$.
3. Any value of x will be in the domain D as long as it does not make the denominator zero. In other words, we must solve the equation

$$
\begin{array}{r}
x^{2}+4 x-12=0 \\
(x+6)(x-2)=0
\end{array}
$$

so $x=-6$ and $x=2$. Hence

$$
D_{f}=\{x \mid x \neq-6, x \neq 2\} .
$$

4. (a) First we have

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f\left(\frac{1}{x-3}\right) \\
& =\frac{1}{\frac{1}{x-3}+3} \\
& =\frac{1}{\frac{1+3(x-3)}{x-3}} \\
& =\frac{x-3}{3 x-8} .
\end{aligned}
$$

Note that this function is undefined if $x=\frac{8}{3}$, while $g(x)$ is undefined if $x=3$. Thus

$$
D_{f \circ g}=\left\{x \left\lvert\, x \neq \frac{8}{3}\right., x \neq 3\right\} .
$$

(b) The composition is

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f(2-x) \\
& =\frac{2-x}{(2-x)^{2}-4} \\
& =\frac{2-x}{x^{2}-4 x} .
\end{aligned}
$$

In this case, $g(x)$ is always defined (it's a polynomial) but the composite function will be undefined if $x^{2}-4 x=x(x-4)=0$, so if $x=0$ or $x=4$. Thus

$$
D_{f \circ g}=\{x \mid x \neq 0, x \neq 4\} .
$$

(c) This time,

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f(\sqrt{4-x}) \\
& =\frac{2}{1-(\sqrt{4-x})^{2}} \\
& =\frac{2}{1-(4-x)} \\
& =\frac{2}{x-3} .
\end{aligned}
$$

This function is undefined if $x=3$, while $g(x)$ is only defined if $4-x \geq 0$ so $x \leq 4$. Hence

$$
D_{f \circ g}=\{x \mid x \leq 4, x \neq 3\} .
$$

5. We simply have

$$
\begin{aligned}
(f \circ f)(x)=f(f(x)) & =f\left(\frac{2}{3 x+4}\right) \\
& =\frac{2}{3\left(\frac{2}{3 x+4}\right)+4} \\
& =\frac{2}{\frac{6}{3 x+4}+4} \\
& =\frac{2}{\frac{6+4(3 x+4)}{3 x+4}} \\
& =\frac{2}{\frac{12 x+22}{3 x+4}} \\
& =\frac{2(3 x+4)}{12 x+22} \\
& =\frac{3 x+4}{6 x+11}
\end{aligned}
$$

This function is undefined for $x=-\frac{11}{6}$ while $f(x)$ is undefined for $x=-\frac{4}{3}$. Thus

$$
D_{f \circ f}=\left\{x \left\lvert\, x \neq-\frac{11}{6}\right., x \neq-\frac{4}{3}\right\} .
$$

6. Observe that

$$
R_{f^{-1}}=D_{f}=\{x \mid x \geq 3, x \neq 5\} .
$$

