MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) $\log _{5}(125)=\log _{5}\left(5^{3}\right)=3$
(b) $\log _{3}(-81)$ is undefined, because the argument of any logarithm must be positive
(c) $\log _{2}\left(\frac{1}{16}\right)=\log _{2}\left(2^{-4}\right)=-4$
(d) $\log _{9}(3)=\log _{9}\left(9^{\frac{1}{2}}\right)=\frac{1}{2}$
(e) $\log _{4}\left(\frac{1}{32}\right)=\log _{4}\left(4^{-\frac{5}{2}}\right)=-\frac{5}{2}$
(f) $\log _{3}(9 \sqrt{3})=\log _{3}\left(3^{2} \cdot 3^{\frac{1}{2}}\right)=\log _{3}\left(3^{\frac{5}{2}}\right)=\frac{5}{2}$
2. (a) $2^{5 \log _{2}(3)}=2^{\log _{2}\left(3^{5}\right)}=2^{\log _{2}(243)}=243$
(b) $9^{\log _{3}(7)}=\left(3^{2}\right)^{\log _{3}(7)}=3^{2 \log _{3}(7)}=3^{\log _{3}\left(7^{2}\right)}=3^{\log _{3}(49)}=49$
(c) $\left(\frac{1}{2}\right)^{\log _{4}(5)}=\left(4^{-\frac{1}{2}}\right)^{\log _{4}(5)}=4^{-\frac{1}{2} \log _{4}(5)}=4^{\log _{4}\left(5^{-\frac{1}{2}}\right)}=5^{-\frac{1}{2}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$
(d) $e^{3 \ln (x)}=e^{\ln \left(x^{3}\right)}=x^{3}$
3. We have

$$
\begin{aligned}
\log _{2}\left(\frac{x^{3} 4^{y}}{2 \sqrt{z}}\right) & =\log _{2}\left(x^{3} 4^{y}\right)-\log _{2}(2 \sqrt{z}) \\
& =\log _{2}\left(x^{3}\right)+\log _{2}\left(4^{y}\right)-\left[\log _{2}(2)+\log _{2}(\sqrt{z})\right] \\
& =3 \log _{2}(x)+y \log _{2}(4)-\log _{2}(2)-\frac{1}{2} \log _{2}(z) \\
& =3 \log _{2}(x)+2 y-1-\frac{1}{2} \log _{2}(z)
\end{aligned}
$$

4. We can write

$$
\begin{aligned}
\ln (x)+\frac{1}{2} \ln (y)-5 \ln (z) & =\ln (x)+\ln (\sqrt{y})-\ln \left(z^{5}\right) \\
& =\ln (x \sqrt{y})-\ln \left(z^{5}\right) \\
& =\ln \left(\frac{x \sqrt{y}}{z^{5}}\right) .
\end{aligned}
$$

5. (a) We have

$$
\begin{aligned}
\log _{4}(x+3) & =2-\log _{4}(x-3) \\
\log _{4}(x+3)+\log _{4}(x-3) & =2 \\
\log _{4}[(x+3)(x-3)] & =2 \\
\log _{4}\left(x^{2}-9\right) & =2 \\
x^{2}-9 & =4^{2} \\
x^{2}-9 & =16 \\
x^{2} & =25 \\
x & = \pm 5 .
\end{aligned}
$$

However, $x=-5$ results in negative arguments of the logarithms in the original equation; hence the only solution is $x=5$.
(b) We have

$$
\begin{aligned}
\frac{1}{2} \ln (7-3 x)-\ln (1-x) & =0 \\
\ln (\sqrt{7-3 x})-\ln (1-x) & =0 \\
\ln \left(\frac{\sqrt{7-3 x}}{1-x}\right) & =0 \\
\frac{\sqrt{7-3 x}}{1-x} & =e^{0} \\
\frac{\sqrt{7-3 x}}{1-x} & =1 \\
\sqrt{7-3 x} & =1-x \\
7-3 x & =(1-x)^{2} \\
7-3 x & =x^{2}-2 x+1 \\
x^{2}+x-6 & =0 \\
(x+3)(x-2) & =0
\end{aligned}
$$

so $x=-3$ or $x=2$. However, $x=2$ results in a negative argument in the second logarithm of the original equation, so the lone solution is $x=-3$.
(c) We have

$$
\begin{aligned}
\log _{2}(x)-\log _{2}(2 x-5) & =3-\log _{2}(x+3) \\
\log _{2}\left(\frac{x}{2 x-5}\right)+\log _{2}(x+3) & =3 \\
\log _{2}\left(\frac{x(x+3)}{2 x-5}\right) & =3 \\
\frac{x(x+3)}{2 x-5} & =2^{3} \\
\frac{x(x+3)}{2 x-5} & =8 \\
x(x+3) & =8(2 x-5) \\
x^{2}+3 x & =16 x-40 \\
x^{2}-13 x+40 & =0 \\
(x-5)(x-8) & =0
\end{aligned}
$$

so $x=5$ or $x=8$. Both of these solutions are valid upon checking.
6. (a) We have

$$
\begin{aligned}
6^{x-1} & =3 \\
\ln \left(6^{x-1}\right) & =\ln (3) \\
(x-1) \ln (6) & =\ln (3) \\
x-1 & =\frac{\ln (3)}{\ln (6)} \\
x & =1+\frac{\ln (3)}{\ln (6)} .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
5^{2 x+1} & =3 \cdot 4^{-x} \\
\ln \left(5^{2 x+1}\right) & =\ln \left(3 \cdot 4^{-x}\right) \\
\ln \left(5^{2 x+1}\right) & =\ln (3)+\ln \left(4^{-x}\right) \\
(2 x+1) \ln (5) & =\ln (3)-x \ln (4) \\
2 x \ln (5)+x \ln (4) & =\ln (3)-\ln (5) \\
x[2 \ln (5)+\ln (4)] & =\ln (3)-\ln (5) \\
x & =\frac{\ln (3)-\ln (5)}{2 \ln (5)+\ln (4)}=\frac{\ln (3)-\ln (5)}{\ln (100)} .
\end{aligned}
$$

(c) If we replace e^{x} with, say, t then this shows that the given equation is comparable to the quadratic equation

$$
t^{2}=3 t+4
$$

So let's try solving it in exactly the same way:

$$
\begin{aligned}
e^{2 x} & =3 e^{x}+4 \\
\left(e^{x}\right)^{2} & =3 e^{x}+4 \\
\left(e^{x}\right)^{2}-3 e^{x}-4 & =0 \\
\left(e^{x}-4\right)\left(e^{x}+1\right) & =0
\end{aligned}
$$

and therefore $e^{x}=4$ or $e^{x}=-1$. If $e^{x}=4$ then $x=\ln (4)$. It is not possible that $e^{x}=-1$, since the range of any exponential function is the interval $(0, \infty)$. Hence the only solution is $x=\ln (4)$.

