SOLUTIONS

1. (a) $25^{\frac{3}{2}}=5^{3}=125$
(b) $(-8)^{\frac{5}{3}}=(-2)^{5}=-32$
(c) $(-16)^{\frac{7}{4}}$ is undefined (we cannot take a fourth root of a negative number)
(d) $81^{-\frac{3}{4}}=3^{-3}=\frac{1}{27}$
(e) $\left(\frac{1}{125}\right)^{\frac{2}{3}}=\left(\frac{1}{5}\right)^{2}=\frac{1}{25}$
(f) $\left(\frac{49}{9}\right)^{-\frac{3}{2}}=\left(\frac{9}{49}\right)^{\frac{3}{2}}=\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$
2. (a) $\left(\frac{x}{y^{-3}}\right)^{-2}=\left(\frac{y^{-3}}{x}\right)^{2}=\frac{y^{-6}}{x^{2}}=\frac{1}{x^{2} y^{6}}=x^{-2} y^{-6}$
(b) $\left(x^{-1} y^{3}\right)^{2}\left(3 x^{0} y\right)^{-3}=\frac{\left(x^{-1} y^{3}\right)^{2}}{[3(1) y]^{3}}=\frac{x^{-2} y^{6}}{27 y^{3}}=\frac{y^{3}}{27 x^{2}}$
(c) $\frac{x^{-2} y^{-2}}{(3 x y)^{-3}}=\frac{(3 x y)^{3}}{x^{2} y^{2}}=\frac{27 x^{3} y^{3}}{x^{2} y^{2}}=27 x y$
(d) $\left(x^{-4}-4 x^{-2}\right)^{-1}=\frac{1}{x^{-4}-4 x^{-2}}=\frac{1}{\frac{1}{x^{4}}-\frac{4}{x^{2}}}=\frac{1}{\frac{1}{x^{4}}-\frac{4 x^{2}}{x^{4}}}=\frac{1}{\frac{1-4 x^{2}}{x^{4}}}=\frac{x^{4}}{1-4 x^{2}}$
3. (a) $\sqrt{8 x y^{3}} \cdot \sqrt{2 x y}=\sqrt{8 x y^{3} \cdot 2 x y}=\sqrt{16 x^{2} y^{4}}=4 x y^{2}$
(b) $\sqrt[3]{81 x^{7}}=\sqrt[3]{27 x^{6} \cdot 3 x}=3 x^{2} \sqrt[3]{3 x}$
(c) $\frac{\sqrt[4]{32 x}}{\sqrt[4]{2 x^{5}}}=\sqrt[4]{\frac{32 x}{2 x^{5}}}=\sqrt[4]{\frac{16}{x^{4}}}=\frac{2}{x}$
(d) $\sqrt[3]{27 \sqrt{64 x}}=\sqrt[3]{27 \cdot 8 \sqrt{x}}=\sqrt[3]{216 \sqrt{x}}=6 \sqrt[3]{\sqrt{x}}=6 \sqrt[6]{x}$

If you find the simplifications in the workings for $\# 3$ to be hard to follow, try rewriting the radical as an exponent. For instance, in the last step of part (d), we have

$$
6 \sqrt[3]{\sqrt{x}}=6\left(x^{\frac{1}{2}}\right)^{\frac{1}{3}}=6 x^{\left(\frac{1}{2} \cdot \frac{1}{3}\right)}=6 x^{\frac{1}{6}}=6 \sqrt[6]{x}
$$

