MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) Observe that $315^{\circ}=360^{\circ}-45^{\circ}$, so

$$
\begin{aligned}
\sin \left(315^{\circ}\right) & =\sin \left(360^{\circ}-45^{\circ}\right) \\
& =\sin \left(360^{\circ}\right) \cos \left(45^{\circ}\right)-\cos \left(360^{\circ}\right) \sin \left(45^{\circ}\right) \\
& =0 \cdot \frac{\sqrt{2}}{2}-1 \cdot \frac{\sqrt{2}}{2} \\
& =-\frac{\sqrt{2}}{2}
\end{aligned}
$$

(b) We can write $\frac{17 \pi}{12}=\frac{8 \pi}{12}+\frac{9 \pi}{12}=\frac{2 \pi}{3}+\frac{3 \pi}{4}$ so

$$
\begin{aligned}
\cos \left(\frac{17 \pi}{12}\right) & =\cos \left(\frac{2 \pi}{3}+\frac{3 \pi}{4}\right) \\
& =\cos \left(\frac{2 \pi}{3}\right) \cos \left(\frac{3 \pi}{4}\right)-\sin \left(\frac{2 \pi}{3}\right) \sin \left(\frac{3 \pi}{4}\right) \\
& =\left(-\frac{1}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}-\sqrt{6}}{4} .
\end{aligned}
$$

(c) Since $\frac{3 \pi}{8}=\frac{1}{2}\left(\frac{3 \pi}{4}\right)$,

$$
\cos \left(\frac{3 \pi}{8}\right)=\sqrt{\frac{1+\cos \left(\frac{3 \pi}{4}\right)}{2}}=\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}=\sqrt{\frac{2-\sqrt{2}}{4}}
$$

Note that we choose the positive square root because $\frac{3 \pi}{8}$ is in the first quadrant, where all trig values are positive.
2. Let's begin by deriving some information we'll use throughout all parts of this question. For α, we can construct a right triangle with opposite sidelength 3, adjacent sidelength 4 , and hypotenuse of length

$$
\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 .
$$

Since α is in the third quadrant,

$$
\sin (\alpha)=-\frac{3}{5} \quad \text { and } \quad \cos (\alpha)=-\frac{4}{5}
$$

For β, we construct a right triangle with opposite sidelength 5 and hypotenuse of length 13 , so its adjacent sidelength is

$$
\sqrt{13^{2}-5^{2}}=\sqrt{144}=12
$$

Since β is in the fourth quadrant,

$$
\cos (\beta)=\frac{12}{13}
$$

(a) $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)=\left(-\frac{3}{5}\right)\left(\frac{12}{13}\right)+\left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right)$

$$
=-\frac{36}{65}+\frac{20}{65}=-\frac{16}{65}
$$

(b) $\sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)=\left(-\frac{3}{5}\right)\left(\frac{12}{13}\right)-\left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right)$

$$
=-\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}
$$

(c) $\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)=\left(-\frac{4}{5}\right)\left(\frac{12}{13}\right)-\left(-\frac{3}{5}\right)\left(-\frac{5}{13}\right)$

$$
=-\frac{48}{65}-\frac{15}{65}=-\frac{63}{65}
$$

(d) $\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)=\left(-\frac{4}{5}\right)\left(\frac{12}{13}\right)+\left(-\frac{3}{5}\right)\left(-\frac{5}{13}\right)$

$$
=-\frac{48}{65}+\frac{15}{65}=-\frac{33}{65}
$$

(e) $\cos \left(\alpha+\frac{\pi}{3}\right)=\cos (\alpha) \cos \left(\frac{\pi}{3}\right)-\sin (\alpha) \sin \left(\frac{\pi}{3}\right)=\left(-\frac{4}{5}\right)\left(\frac{1}{2}\right)-\left(-\frac{3}{5}\right)\left(\frac{\sqrt{3}}{2}\right)$

$$
=-\frac{2}{5}+\frac{3 \sqrt{3}}{10}=\frac{3 \sqrt{3}-4}{10}
$$

(f) $\sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha)=2\left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right)=\frac{24}{25}$
(g) $\cos (2 \alpha)=\cos ^{2}(\alpha)-\sin ^{2}(\alpha)=\left(-\frac{4}{5}\right)^{2}-\left(-\frac{3}{5}\right)^{2}=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$
(h) Since β is in the fourth quadrant, $\frac{1}{2} \beta$ must be in the second quadrant so its sine must be positive, and thus

$$
\sin \left(\frac{\beta}{2}\right)=\sqrt{\frac{1-\cos (\beta)}{2}}=\sqrt{\frac{1-\frac{12}{13}}{2}}=\sqrt{\frac{1}{26}}=\frac{\sqrt{26}}{26}
$$

(i) Since we've determined that $\frac{1}{2} \beta$ is in the second quadrant and cosine is negative there, we have

$$
\cos \left(\frac{\beta}{2}\right)=-\sqrt{\frac{1+\cos (\beta)}{2}}=-\sqrt{\frac{1+\frac{12}{13}}{2}}=-\sqrt{\frac{25}{26}}=-\frac{5 \sqrt{26}}{26}
$$

3. (a) We have found that $\sin (\alpha+\beta)<0$, which places the angle in either the third or fourth quadrant. Also, we've determined that $\cos (\alpha+\beta)<0$, which means it must lie in either the second or third quadrant. Hence $\alpha+\beta$ is in the third quadrant.
(b) We also deduced that $\sin (\alpha-\beta)<0$ and $\cos (\alpha-\beta)<0$, so using the same reasoning as in part (a), $\alpha-\beta$ must be in the third quadrant as well.
4. (a) We begin on the left:

$$
\begin{aligned}
\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)} & =\frac{\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)}{\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)} \\
& =\frac{\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)}{\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)} \cdot \frac{\frac{1}{\cos (\alpha) \cos (\beta)}}{\frac{1}{\cos (\alpha) \cos (\beta)}} \\
& =\frac{1-\frac{\sin (\alpha) \sin (\beta)}{\cos (\alpha) \cos (\beta)}}{1+\frac{\sin (\alpha) \sin (\beta)}{\cos (\alpha) \cos (\beta)}} \\
& =\frac{1-\tan (\alpha) \tan (\beta)}{1+\tan (\alpha) \tan (\beta)}
\end{aligned}
$$

(b) Again, we begin on the left:

$$
\begin{aligned}
\cos ^{2}\left(\frac{x}{2}\right) & =\frac{1+\cos (x)}{2} \\
& =\frac{1+\cos (x)}{2} \cdot \frac{\sec (x)}{\sec (x)} \\
& =\frac{\sec (x)+1}{2 \sec (x)}
\end{aligned}
$$

(c) We start on the left one more time:

$$
\begin{aligned}
\sin (2 t)-\tan (t) & =2 \sin (t) \cos (t)-\frac{\sin (t)}{\cos (t)} \\
& =\frac{2 \sin (t) \cos ^{2}(t)-\sin (t)}{\cos (t)} \\
& =\frac{\sin (t)\left[2 \cos ^{2}(t)-1\right]}{\cos (t)} \\
& =\tan (t) \cos (2 t)
\end{aligned}
$$

5. (a) Since the only other trig function in the equation is $\sin (x)$, we use the identity $\cos (2 x)=$ $1-\sin ^{2}(x)$, giving

$$
\begin{aligned}
\sin (x) & =1-\left[1-2 \sin ^{2}(x)\right] \\
\sin (x) & =2 \sin ^{2}(x) \\
2 \sin ^{2}(x)-\sin (x) & =0 \\
\sin (x)[2 \sin (x)-1] & =0
\end{aligned}
$$

If $\sin (x)=0$ then either $x=0$ or $x=\pi$. If $\sin (x)=\frac{1}{2}$ then $x=\frac{\pi}{6}$ or $x=\frac{5 \pi}{6}$. Hence the three solutions are

$$
x=0, \quad \frac{\pi}{6}, \quad \frac{5 \pi}{6}, \quad \pi .
$$

(b) We have

$$
\begin{aligned}
2 \sin (x) \cos (x)+2 \cos ^{2}(x) & =0 \\
2 \cos (x)[\sin (x)+\cos (x)] & =0
\end{aligned}
$$

so one possibility is that $\cos (x)=0$, giving $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$. The other possibility is that $\sin (x)=-\cos (x)$. Dividing both sides by $\cos (x)$, this becomes $\tan (x)=-1$, and so either $x=\frac{3 \pi}{4}$ or $x=\frac{7 \pi}{4}$. Hence the four solutions are

$$
x=\frac{\pi}{2}, \quad \frac{3 \pi}{4}, \quad \frac{3 \pi}{2}, \quad \frac{7 \pi}{4} .
$$

