MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) We have

$$
\begin{aligned}
\frac{\cot ^{2}(x)}{3} & =1 \\
\cot ^{2}(x) & =3 \\
\cot (x) & = \pm \sqrt{3} \\
\tan (x) & = \pm \frac{\sqrt{3}}{3} .
\end{aligned}
$$

(It's not strictly necessary to turn the cotangent into a tangent function, but people typically become more familiar with the values of tangent than with cotangent.) If $\tan (x)=\frac{\sqrt{3}}{3}$ then the solutions are $x=\frac{\pi}{6}$ and $x=\frac{7 \pi}{6}$. If $\tan (x)=-\frac{\sqrt{3}}{3}$ then the solutions are $x=\frac{5 \pi}{6}$ and $x=\frac{11 \pi}{6}$. Hence this equation has four solutions:

$$
x=\frac{\pi}{6}, \quad x=\frac{5 \pi}{6}, x=\frac{7 \pi}{6}, \quad x=\frac{11 \pi}{6} .
$$

(b) We write

$$
\begin{aligned}
\sin ^{2}(x) & =\frac{1}{2} \sin (x) \\
\sin ^{2}(x)-\frac{1}{2} \sin (x) & =0 \\
\sin (x)\left[\sin (x)-\frac{1}{2}\right] & =0
\end{aligned}
$$

so either $\sin (x)=0$ (and thus $x=0$ or $x=\pi$) or $\sin (x)=\frac{1}{2}$ (which means $x=\frac{\pi}{6}$ or $x=\frac{5 \pi}{6}$). Thus the four solutions are

$$
x=0, \quad x=\frac{\pi}{6}, \quad x=\frac{5 \pi}{6}, \quad x=\pi .
$$

(c) We have

$$
\begin{aligned}
\sin ^{2}(x) & =\cos (x) \sin (x) \\
\sin ^{2}(x)-\cos (x) \sin (x) & =0 \\
\sin (x)[\sin (x)-\cos (x)] & =0 .
\end{aligned}
$$

Clearly, we can have $\sin (x)=0$ so $x=0$ or $x=\pi$. Otherwise, this results in $\sin (x)=$ $\cos (x)$ which is not a particularly helpful equation: we want to get a trig function equal to some familiar number. However, if we divide both sides of this by $\cos (x)$, we arrive at $\tan (x)=1$, so now we see that $x=\frac{\pi}{4}$ or $x=\frac{5 \pi}{4}$. Again, then, we have four solutions:

$$
x=0, \quad x=\frac{\pi}{4}, \quad x=\pi, \quad x=\frac{5 \pi}{4} .
$$

(d) We factor as we would for a quadratic equation:

$$
\begin{aligned}
2 \sin ^{2}(x)-\sin (x)-1 & =0 \\
{[2 \sin (x)+1][\sin (x)-1] } & =0
\end{aligned}
$$

so either $\sin (x)=-\frac{1}{2}$ (and therefore $x=\frac{7 \pi}{6}$ or $x=\frac{11 \pi}{6}$), or $\sin (x)=1$ (so $x=\frac{\pi}{2}$). Hence this equation has three solutions:

$$
x=\frac{\pi}{2}, \quad x=\frac{7 \pi}{6}, \quad \frac{11 \pi}{6} .
$$

[5] (e) Since $\sec ^{2}(x)=\tan ^{2}(x)+1$, we have

$$
\begin{aligned}
\sec ^{2}(x)+\tan ^{2}(x) & =7 \\
{\left[\tan ^{2}(x)+1\right]+\tan ^{2}(x) } & =7 \\
2 \tan ^{2}(x) & =6 \\
\tan ^{2}(x) & =3 \\
\tan (x) & = \pm \sqrt{3} .
\end{aligned}
$$

If $\tan (x)=\sqrt{3}$ then $x=\frac{\pi}{3}$ or $x=\frac{4 \pi}{3}$. If $\tan (x)=-\sqrt{3}$ then $x=\frac{2 \pi}{3}$ or $x=\frac{5 \pi}{3}$. Thus the four solutions are

$$
x=\frac{\pi}{3}, \quad x=\frac{2 \pi}{3}, \quad x=\frac{4 \pi}{3}, \quad x=\frac{5 \pi}{3} .
$$

