MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 3.5	Math 1090	Fall 2009
	SOLUTIONS	

1. (a) We have

 $\frac{\cot^2(x)}{3} = 1$ $\cot^2(x) = 3$ $\cot(x) = \pm\sqrt{3}$ $\tan(x) = \pm\frac{\sqrt{3}}{3}.$

(It's not strictly necessary to turn the cotangent into a tangent function, but people typically become more familiar with the values of tangent than with cotangent.) If $\tan(x) = \frac{\sqrt{3}}{3}$ then the solutions are $x = \frac{\pi}{6}$ and $x = \frac{7\pi}{6}$. If $\tan(x) = -\frac{\sqrt{3}}{3}$ then the solutions are $x = \frac{\pi}{6}$ and $x = \frac{5\pi}{6}$ and $x = \frac{11\pi}{6}$. Hence this equation has four solutions:

$$x = \frac{\pi}{6}, \quad x = \frac{5\pi}{6}, x = \frac{7\pi}{6}, \quad x = \frac{11\pi}{6}.$$

(b) We write

$$\sin^2(x) = \frac{1}{2}\sin(x)$$
$$\sin^2(x) - \frac{1}{2}\sin(x) = 0$$
$$\sin(x)\left[\sin(x) - \frac{1}{2}\right] = 0$$

so either $\sin(x) = 0$ (and thus x = 0 or $x = \pi$) or $\sin(x) = \frac{1}{2}$ (which means $x = \frac{\pi}{6}$ or $x = \frac{5\pi}{6}$). Thus the four solutions are

$$x = 0, \quad x = \frac{\pi}{6}, \quad x = \frac{5\pi}{6}, \quad x = \pi.$$

(c) We have

$$\sin^2(x) = \cos(x)\sin(x)$$
$$\sin^2(x) - \cos(x)\sin(x) = 0$$
$$\sin(x)[\sin(x) - \cos(x)] = 0.$$

Clearly, we can have $\sin(x) = 0$ so x = 0 or $x = \pi$. Otherwise, this results in $\sin(x) = \cos(x)$ which is not a particularly helpful equation: we want to get a trig function equal to some familiar number. However, if we divide both sides of this by $\cos(x)$, we arrive at $\tan(x) = 1$, so now we see that $x = \frac{\pi}{4}$ or $x = \frac{5\pi}{4}$. Again, then, we have four solutions:

$$x = 0, \quad x = \frac{\pi}{4}, \quad x = \pi, \quad x = \frac{5\pi}{4}.$$

(d) We factor as we would for a quadratic equation:

$$2\sin^2(x) - \sin(x) - 1 = 0$$
$$[2\sin(x) + 1][\sin(x) - 1] = 0$$

so either $\sin(x) = -\frac{1}{2}$ (and therefore $x = \frac{7\pi}{6}$ or $x = \frac{11\pi}{6}$), or $\sin(x) = 1$ (so $x = \frac{\pi}{2}$). Hence this equation has three solutions:

$$x = \frac{\pi}{2}, \quad x = \frac{7\pi}{6}, \quad \frac{11\pi}{6}.$$

(e) Since $\sec^2(x) = \tan^2(x) + 1$, we have

$$\sec^2(x) + \tan^2(x) = 7$$
$$[\tan^2(x) + 1] + \tan^2(x) = 7$$
$$2\tan^2(x) = 6$$
$$\tan^2(x) = 3$$
$$\tan(x) = \pm\sqrt{3}.$$

If $\tan(x) = \sqrt{3}$ then $x = \frac{\pi}{3}$ or $x = \frac{4\pi}{3}$. If $\tan(x) = -\sqrt{3}$ then $x = \frac{2\pi}{3}$ or $x = \frac{5\pi}{3}$. Thus the four solutions are

$$x = \frac{\pi}{3}, \quad x = \frac{2\pi}{3}, \quad x = \frac{4\pi}{3}, \quad x = \frac{5\pi}{3}.$$

[5]