MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) We already know that

$$
\sin \left(0^{\circ}\right)=0 \quad \text { and } \quad \cos \left(0^{\circ}\right)=1
$$

This means that

$$
\begin{aligned}
& \tan \left(0^{\circ}\right)=\frac{\sin \left(0^{\circ}\right)}{\cos \left(0^{\circ}\right)}=\frac{0}{1}=0 \\
& \sec \left(0^{\circ}\right)=\frac{1}{\cos \left(0^{\circ}\right)}=\frac{1}{1}=1 \\
& \csc \left(0^{\circ}\right)=\frac{1}{\sin \left(0^{\circ}\right)}=\frac{1}{0} \quad(\text { undefined }) \\
& \cot \left(0^{\circ}\right)=\frac{1}{\tan \left(0^{\circ}\right)}=\frac{1}{0} \quad \text { (undefined) }
\end{aligned}
$$

(b) We already know that

$$
\sin \left(30^{\circ}\right)=\frac{1}{2} \quad \text { and } \quad \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}
$$

This means that

$$
\begin{aligned}
& \tan \left(30^{\circ}\right)=\frac{\sin \left(30^{\circ}\right)}{\cos \left(30^{\circ}\right)}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{2} \cdot \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \sec \left(30^{\circ}\right)=\frac{1}{\cos \left(30^{\circ}\right)}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& \csc \left(30^{\circ}\right)=\frac{1}{\sin \left(30^{\circ}\right)}=\frac{1}{\frac{1}{2}}=2 \\
& \cot \left(30^{\circ}\right)=\frac{1}{\tan \left(30^{\circ}\right)}=\frac{1}{\frac{\sqrt{3}}{3}}=\frac{3}{\sqrt{3}}=\sqrt{3} .
\end{aligned}
$$

(c) We already know that

$$
\sin \left(45^{\circ}\right)=\cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}
$$

This means that

$$
\begin{aligned}
& \tan \left(45^{\circ}\right)=\frac{\sin \left(45^{\circ}\right)}{\cos \left(45^{\circ}\right)}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1 \\
& \sec \left(45^{\circ}\right)=\frac{1}{\cos \left(45^{\circ}\right)}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2} \\
& \csc \left(45^{\circ}\right)=\frac{1}{\sin \left(45^{\circ}\right)}=\frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2} \\
& \cot \left(45^{\circ}\right)=\frac{1}{\tan \left(45^{\circ}\right)}=\frac{1}{1}=1 .
\end{aligned}
$$

(d) We already know that

$$
\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} \quad \text { and } \quad \cos \left(60^{\circ}\right)=\frac{1}{2}
$$

This means that

$$
\begin{aligned}
& \tan \left(60^{\circ}\right)=\frac{\sin \left(60^{\circ}\right)}{\cos \left(60^{\circ}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{2} \cdot 2=\sqrt{3} \\
& \sec \left(60^{\circ}\right)=\frac{1}{\cos \left(60^{\circ}\right)}=\frac{1}{\frac{1}{2}}=2 \\
& \csc \left(60^{\circ}\right)=\frac{1}{\sin \left(60^{\circ}\right)}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& \cot \left(60^{\circ}\right)=\frac{1}{\tan \left(60^{\circ}\right)}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} .
\end{aligned}
$$

(e) We already know that

$$
\sin \left(90^{\circ}\right)=1 \quad \text { and } \quad \cos \left(90^{\circ}\right)=0
$$

This means that

$$
\begin{aligned}
& \tan \left(90^{\circ}\right)=\frac{\sin \left(90^{\circ}\right)}{\cos \left(90^{\circ}\right)}=\frac{1}{0} \quad(\text { undefined }) \\
& \sec \left(90^{\circ}\right)=\frac{1}{\cos \left(90^{\circ}\right)}=\frac{1}{0} \quad(\text { undefined }) \\
& \csc \left(90^{\circ}\right)=\frac{1}{\sin \left(90^{\circ}\right)}=\frac{1}{1}=1 \\
& \cot \left(90^{\circ}\right)=\frac{1}{\tan \left(90^{\circ}\right)}=\frac{1}{\frac{1}{0}}=\frac{0}{1}=0 .
\end{aligned}
$$

2. There are several approaches we could take. First, we could simply observe that

$$
\tan (\theta)=\frac{4 \sqrt{3}}{4}=\sqrt{3},
$$

and see from $\# 1(\mathrm{~d})$, above, that $\theta=60^{\circ}$.
On the other hand, if you're more comfortable working with values of sine and cosine, we can use the Pythagorean theorem to find the length h of the hypotenuse:

$$
\begin{aligned}
h^{2} & =(4 \sqrt{3})^{2}+4^{2}=48+16=64 \\
h & =\sqrt{64}=8
\end{aligned}
$$

So then, for instance,

$$
\cos (\theta)=\frac{4}{8}=\frac{1}{2}
$$

which you should immediately recognise as the cosine of 60°.
3. We construct a right triangle with interior angle θ, opposite sidelength 12 and adjacent sidelength 5 ; by the Pythagorean theorem, the length h of the hypotenuse is

$$
\begin{aligned}
h^{2} & =12^{2}+5^{2}=144+25=169 \\
h & =\sqrt{169}=13
\end{aligned}
$$

Now we can see that

$$
\begin{aligned}
& \sin (\theta)=\frac{12}{13} \\
& \cos (\theta)=\frac{5}{13} \\
& \cot (\theta)=\frac{5}{12} \\
& \sec (\theta)=\frac{13}{5} \\
& \csc (\theta)=\frac{13}{12}
\end{aligned}
$$

4. If we envision this as a right triangle, then the length of the side opposite the 35° angle is 4 , and we're trying to find the length of the hypotenuse, h. An appropriate trig ratio to use, then, is the sine function:

$$
\begin{aligned}
\sin \left(35^{\circ}\right) & =\frac{4}{h} \\
h & =\frac{4}{\sin \left(35^{\circ}\right)} \\
& \approx \frac{4}{0.57358} \\
& \approx 6.97379 .
\end{aligned}
$$

To two decimal places, therefore, the ladder is approximately 6.97 metres long.

