MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.5 Math 1090 Fall 2009

SOLUTIONS

- 1. (a) The graph has undergone:
 - a horizontal translation of 5 units to the left
 - a vertical skewing (stretched by a factor of 2)
 - (b) We can rewrite this function as

$$f(x) = -|x - 3| + \frac{7}{2}.$$

Now we can more easily see that the graph has undergone:

- a horizontal translation 3 units to the right
- a vertical reflection
- $\bullet~$ a vertical translation $\frac{7}{2}$ units upwards
- 2. (a) This graph has undergone:
 - a vertical skewing (stretched by a factor of 3)
 - a vertical reflection
 - a vertical translation 2 units downwards
 - (b) We can rewrite this function as

$$y = [2(x+1)]^2 = 2^2(x+1)^2 = 4(x+1)^2.$$

Now we can see that this graph has undergone:

- a horizontal translation 1 unit to the left
- a vertical skewing (stretched by a factor of 4)
- 3. (a) This graph has undergone:
 - a horizontal translation 4 units to the right
 - a vertical translation 1 unit upwards
 - (b) We can write this function as

$$f(x) = -\frac{2}{5}\sqrt{-(x-4)}.$$

From this, we see that the graph has undergone:

- a horizontal translation 4 units to the right
- a horizontal reflection
- a vertical skewing (shrunk by a factor of $\frac{2}{5}$)
- a vertical reflection

4. (a) Since the vertex is the point (0,1), the axis of symmetry is the line x=0 (that is, the y-axis). See the graph, below.

(b) Since the vertex is the point (2,1), the axis of symmetry is the line x=2. See the graph, below.

(c) Since the vertex is the point $(\frac{1}{2}, -4)$, the axis of symmetry is the line $x = \frac{1}{2}$. See the graph, above.