SOLUTIONS

1. (a) Squaring both sides, we obtain

$$
\begin{aligned}
2-x & =(2-x)^{2} \\
2-x & =4-4 x+x^{2} \\
x^{2}-3 x+2 & =0 \\
(x-2)(x-1) & =0
\end{aligned}
$$

so the two possible solutions are $x=2$ and $x=1$. We need to check these solutions. For $x=2$, we see that

$$
\sqrt{2-x}=\sqrt{2-2}=0 \quad \text { and } \quad 2-x=2-2=0
$$

so this is a solution. For $x=1$, we have

$$
\sqrt{2-1}=\sqrt{1}=1 \quad \text { and } \quad 2-1=1
$$

so this is also a solution. Hence $x=2$ and $x=1$ are both solutions of the equation.
(b) We isolate the square root to get

$$
\begin{aligned}
\sqrt{4 x-1} & =3-4 x \\
4 x-1 & =(3-4 x)^{2} \\
4 x-1 & =9-24 x+16 x^{2} \\
16 x^{2}-28 x+10 & =0 \\
8 x^{2}-14 x+5 & =0 \\
(4 x-5)(2 x-1) & =0
\end{aligned}
$$

so the two possible solutions are $x=\frac{5}{4}$ and $x=\frac{1}{2}$. However, substitution of $x=\frac{5}{4}$ into the original equation gives

$$
\sqrt{4 x-1}+4 x=7 \neq 3
$$

so only $x=\frac{1}{2}$ is a solution.
(c) Rearranging the equation, we have

$$
\begin{aligned}
\sqrt{5 x-4} & =1-3 x \\
5 x-4 & =(1-3 x)^{2} \\
5 x-4 & =9 x^{2}-6 x+1 \\
9 x^{2}-11 x+5 & =0 .
\end{aligned}
$$

This cannot be factored, so we use the quadratic formula:

$$
x=\frac{-(-11) \pm \sqrt{(-11)^{2}-4 \cdot 9 \cdot 5}}{2 \cdot 9}=\frac{11 \pm \sqrt{121-180}}{18}=\frac{11 \pm \sqrt{-59}}{18} .
$$

We don't need to go any further because we can see now that the discriminant (-59) is negative, which means that there are no real solutions x. Hence this equation has no solutions.
2. (a) We solve the inequality

$$
\begin{aligned}
3-7 x & \geq 0 \\
3 & \geq 7 x \\
\frac{3}{7} & \geq x .
\end{aligned}
$$

Hence the domain is $\left(-\infty, \frac{3}{7}\right]$.
(b) We require

$$
\begin{aligned}
2 x+6 & \geq 0 \\
2 x & \geq-6 \\
x & \geq-3 .
\end{aligned}
$$

Now we see that the domain is $[-3, \infty)$.
3. (a) Observe that

$$
\sqrt{4 x+12}=\sqrt{4(x+3)}=\sqrt{4} \cdot \sqrt{x+3}=2 \sqrt{x+3} .
$$

Thus

$$
f(x)=\frac{1}{6} \cdot 2 \sqrt{x+3}=\frac{1}{3} \sqrt{x+3}
$$

Comparing this to the standard form of a square root function, we see that $h=-3$ and $k=0$, so the vertex is $(-3,0)$.
(b) We can write

$$
\sqrt{1-3 x}=\sqrt{3\left(\frac{1}{3}-x\right)}=\sqrt{3} \cdot \sqrt{\frac{1}{3}-x}
$$

so

$$
g(x)=\sqrt{3} \cdot \sqrt{\frac{1}{3}-x}-8
$$

(Remember that we cannot simplify $\sqrt{3}$ any further.) In the standard form of a square root function, $h=\frac{1}{3}$ and $k=-8$, so the vertex is the point $\left(\frac{1}{3},-8\right)$.
4. (a) First note that the vertex is $(-4,1)$. To find any x-intercepts, we set

$$
\begin{aligned}
\sqrt{x+4}+1 & =0 \\
\sqrt{x+4} & =-1
\end{aligned}
$$

which is impossible because a square root can never be negative. Hence there is no x-intercept. To determine if there is a y-intercept, we set $x=0$ and obtain

$$
y=\sqrt{0+4}+1=\sqrt{4}+1=3
$$

so $(0,3)$ is the y-intercept. We need one more point to sketch the graph, such as $x=-3$, for which

$$
y=\sqrt{-3+4}+1=\sqrt{1}+1=2
$$

Hence $(-3,2)$ is a point on the curve, and now we can sketch the graph.

We see that the domain of the function is $[-4, \infty)$ and the range is $[1, \infty)$.
(b) We rewrite the given equation as

$$
y=-4 \sqrt{x}+3
$$

and see that the vertex is $(0,3)$. This is also the y-intercept. The x-intercept can be found by setting

$$
\begin{aligned}
-4 \sqrt{x}+3 & =0 \\
3 & =4 \sqrt{x} \\
\frac{3}{4} & =\sqrt{x} \\
\left(\frac{3}{4}\right)^{2} & =x \\
\frac{9}{16} & =x .
\end{aligned}
$$

Observe that

$$
-4 \sqrt{\frac{9}{16}}+3=-4 \cdot \frac{3}{4}+3=-3+3=0
$$

so this is a solution of the equation. Thus $\left(\frac{9}{16}, 0\right)$ is the x-intercept.
We need one more point on the graph, such as $x=1$, for which

$$
y=-4 \sqrt{1}+3=-4 \cdot 1+3=-1
$$

so $(1,-1)$ is such a point. Now we can sketch the graph, below.
We see that the domain of the function is $[0, \infty)$ and the range is $(-\infty, 3]$.

(c) We can immediately we see that the vertex is $(1,-2)$.

To find the x-intercept, we solve

$$
\begin{aligned}
\sqrt{1-x}-2 & =0 \\
\sqrt{1-x} & =2 \\
1-x & =2^{2} \\
1-x & =4 \\
-x & =3 \\
x & =-3 .
\end{aligned}
$$

Note that

$$
\sqrt{1-(-3)}-2=\sqrt{4}-2=2-2=0
$$

so $(-3,0)$ is the x-intercept.
To find the y-intercept, we observe that

$$
f(0)=\sqrt{1-0}-2=1-2=-1,
$$

so $(0,-1)$ is the y-intercept. Now we can sketch the graph, above.
We see that the domain of the function is $(-\infty, 1]$ and the range is $[-2, \infty)$.

