SOLUTIONS

1. (a) We have

$$
\begin{aligned}
5-|x-2| & =0 \\
-|x-2| & =-5 \\
|x-2| & =5 .
\end{aligned}
$$

We now have two possibilities. If $|x-2|=x-2$ then

$$
\begin{aligned}
x-2 & =5 \\
x & =7 .
\end{aligned}
$$

On the other hand, if $|x-2|=-(x-2)=-x+2$ then

$$
\begin{aligned}
-x+2 & =5 \\
-x & =3 \\
x & =-3 .
\end{aligned}
$$

We check both of these values by substituting back into the original equation. When $x=7$,

$$
5-|x-2|=5-|7-2|=5-|5|=5-5=0
$$

so $x=7$ is a solution. When $x=-3$,

$$
5-|x-2|=5-|-3-2|=5-|-5|=5-5=0
$$

so $x=-3$ is also a solution. Hence there are two solutions: $x=7$ and $x=-3$.
(b) If $|3-2 x|=3-2 x$ then

$$
\begin{aligned}
3-2 x & =5 \\
-2 x & =2 \\
x & =-1 .
\end{aligned}
$$

If $|3-2 x|=-(3-2 x)=-3+2 x$ then

$$
\begin{aligned}
-3+2 x & =5 \\
2 x & =8 \\
x & =4 .
\end{aligned}
$$

Again, we need to check the validity of these solutions. When $x=-1$,

$$
|3-2 x|=|3-2(-1)|=|3+2|=|5|=5,
$$

so $x=-1$ is a solution. When $x=4$,

$$
|3-2 x|=|3-2 \cdot 4|=|3-8|=|-5|=5,
$$

so $x=4$ is also a solution. Hence both $x-1$ and $x=4$ are solutions of the equation.
(c) If $|x+4|=x+4$ then the equation becomes

$$
\begin{aligned}
x+4 & =3-x \\
2 x & =-1 \\
x & =-\frac{1}{2} .
\end{aligned}
$$

If $|x+4|=-(x+4)=-x-4$ then we obtain

$$
\begin{aligned}
-x-4 & =3-x \\
0 & =7,
\end{aligned}
$$

which is not possible. Checking $x=-\frac{1}{2}$ by substitution, we have

$$
\left|-\frac{1}{2}+4\right|=\left|\frac{7}{2}\right|=\frac{7}{2}
$$

and

$$
3-x=3-\left(-\frac{1}{2}\right)=3+\frac{1}{2}=\frac{7}{2}
$$

so this is indeed a solution. Therefore $x=-\frac{1}{2}$ is the only solution.
(d) We have

$$
\begin{aligned}
3|2-x| & =6-\frac{7 x}{3} \\
|2-x| & =2-\frac{7}{9} x
\end{aligned}
$$

If $|2-x|=2-x$ then

$$
\begin{aligned}
2-x & =2-\frac{7}{9} x \\
-\frac{2}{9} x & =0 \\
x & =0
\end{aligned}
$$

If $|2-x|=-(2-x)=-2+x$ then

$$
\begin{aligned}
-2+x & =2-\frac{7}{9} x \\
\frac{16}{9} x & =4 \\
x & =\frac{9}{4} .
\end{aligned}
$$

We check both solutions. When $x=0$,

$$
3|2-x|=3|2-0|=3|2|=3 \cdot 2=6 \quad \text { and } \quad 6-\frac{7 x}{3}=6-\frac{7 \cdot 0}{3}=6-0=6
$$

so this is a solution. When $x=\frac{9}{4}$,

$$
3\left|2-\frac{9}{4}\right|=3\left|-\frac{1}{4}\right|=3 \cdot \frac{1}{4}=\frac{3}{4} \quad \text { and } \quad 6-\frac{7 x}{3}=6-\frac{7 \cdot \frac{9}{4}}{3}=6-\frac{21}{4}=\frac{3}{4}
$$

so this is also a solution. Thus there are two solutions: $x=0$ and $x=\frac{9}{4}$.
(e) We have

$$
\begin{aligned}
3 x-\frac{1}{4}|4 x-1| & =0 \\
-\frac{1}{4}|4 x-1| & =-3 x \\
|4 x-1| & =12 x .
\end{aligned}
$$

If $|4 x-1|=4 x-1$ then

$$
\begin{aligned}
4 x-1 & =12 x \\
-8 x & =1 \\
x & =-\frac{1}{8} .
\end{aligned}
$$

If $|4 x-1|=-(4 x-1)=-4 x+1$ then

$$
\begin{aligned}
-4 x+1 & =12 x \\
-16 x & =-1 \\
x & =\frac{1}{16} .
\end{aligned}
$$

We verify both possibilities. For $x=-\frac{1}{8}$,

$$
3 x-\frac{1}{4}|4 x-1|=3\left(-\frac{1}{8}\right)-\frac{1}{4}\left|4\left(-\frac{1}{8}\right)-1\right|=-\frac{3}{8}-\frac{1}{4}\left|-\frac{3}{2}\right|=-\frac{3}{8}-\frac{1}{4} \cdot \frac{3}{2}=-\frac{3}{8}-\frac{3}{8}=-\frac{3}{4},
$$

so this is not a solution. For $x=\frac{1}{16}$,

$$
3 x-\frac{1}{4}|4 x-1|=3 \cdot \frac{1}{16}-\frac{1}{4}\left|4 \cdot \frac{1}{16}-1\right|=\frac{3}{16}-\frac{1}{4}\left|-\frac{3}{4}\right|=\frac{3}{16}-\frac{1}{4} \cdot \frac{3}{4}=\frac{3}{16}-\frac{3}{16}=0
$$

so this is a solution. Hence the only solution is $x=\frac{1}{16}$.
2. (a) First we rewrite the given function as a piecewise function. We solve the inequality

$$
\begin{aligned}
1-\frac{x}{3} & \geq 0 \\
1 & \geq \frac{1}{3} x \\
3 & \geq x .
\end{aligned}
$$

This means that

$$
\left|1-\frac{x}{3}\right|=\left\{\begin{array}{cc}
1-\frac{x}{3} & \text { for } x \leq 3 \\
-1+\frac{x}{3} & \text { for } x>3
\end{array}\right.
$$

and so the vertex is located at $x=3$. At this point,

$$
y=\left|1-\frac{x}{3}\right|=\left|1-\frac{3}{3}\right|=|1-1|=|0|=0
$$

so the vertex is the point $(3,0)$.
This must also be the (only) x-intercept, but to check this we can solve the equation

$$
\left|1-\frac{x}{3}\right|=0
$$

Either

$$
\begin{aligned}
1-\frac{x}{3} & =0 \\
-\frac{x}{3} & =-1 \\
x & =3
\end{aligned}
$$

or

$$
\begin{aligned}
-1+\frac{x}{3} & =0 \\
\frac{x}{3} & =1 \\
x & =3 .
\end{aligned}
$$

Either way, we see that $(3,0)$ is indeed the only x-intercept.
To find the y-intercept, we set $x=0$ and obtain

$$
y=\left|1-\frac{0}{3}\right|=|1-0|=|1|=1
$$

so $(0,1)$ is the y-intercept.
This is a point to the left of the x-intercept (since $0<3$) so to sketch the graph we also need a point to the right. If we choose $x=4$ then

$$
y=\left|1-\frac{4}{3}\right|=\left|-\frac{1}{3}\right|=\frac{1}{3},
$$

so $\left(4, \frac{1}{3}\right)$ is such a point. (Another good choice would be $x=6$, since then we won't have to deal with fractions. In that case, we would obtain the point $(6,1)$.) Now we can sketch the graph, below.

(b) We set

$$
\begin{aligned}
x+2 & \geq 0 \\
x & \geq-2 .
\end{aligned}
$$

This means that

$$
|x+2|=\left\{\begin{array}{cc}
x+2 & \text { for } x \geq-2 \\
-x-2 & \text { for } x<-2
\end{array}\right.
$$

and so

$$
-2|x+2|=\left\{\begin{array}{cc}
-2 x-4 & \text { for } x \geq-2 \\
2 x+4 & \text { for } x<-2
\end{array}\right.
$$

and finally

$$
-2|x+2|-1=\left\{\begin{array}{cl}
-2 x-5 & \text { for } x \geq-2 \\
2 x+3 & \text { for } x<-2
\end{array}\right.
$$

The vertex is at $x=-2$, and

$$
f(-2)=-2|-2+2|-1=-2|0|-1=0-1=-1
$$

so this is the point $(-2,-1)$.

The x-intercepts can be found by setting

$$
\begin{aligned}
-2|x+2|-1 & =0 \\
-2|x+2| & =1 \\
|x+2| & =-\frac{1}{2},
\end{aligned}
$$

which is impossible since an absolute value is never negative. Thus there are no solutions to this equations, and therefore there are no x-intercepts.
For the y-intercept, we calculate

$$
f(0)=-2|0+2|-1=-2|2|-1=-2 \cdot 2-1=-5
$$

so $(0,-5)$ is the y-intercept.
We need one point to the left of the vertex, such as at $x=-3$. Here,

$$
f(-3)=-2|-3+2|-1=-2|-1|-1=-2 \cdot 1-1=-3
$$

and so $(-3,-3)$ is a point on the graph. Now we can sketch the graph, as found above.

