MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECtion 2.2 (part One)

Math 1090
Fall 2009

SOLUTIONS

1. (a) $|7-3|=|4|=4$
(b) $|3-7|=|-4|=4$
(c) $|-3-7|=|-10|=10$
(d) $|8|-|-1|=8-1=7$
(e) $|-2 \cdot 4|=|-8|=8$
(f) $-2 \cdot|4|=-2 \cdot 4=-8$
(g) $\frac{5}{|-5|}=\frac{5}{5}=1$
(h) $\frac{|-3+3|}{3}=\frac{|0|}{3}=\frac{0}{3}=0$
(i) $\frac{|-3|+|3|}{3}=\frac{3+3}{3}=\frac{6}{3}=2$
2. (a) $f(2)=|6-3 \cdot 2|-2=|6-6|-2=|0|-2=0-2=-2$
(b) $f\left(\frac{11}{3}\right)=\left|6-3 \cdot \frac{11}{3}\right|-2=|6-11|-2=|-5|-2=5-2=3$
(c) $f(-1)=|6-3(-1)|-2=|6+3|-2=|9|-2=9-2=7$
3. (a) $g(4)=\left|3 \cdot 4-\frac{5}{2} \cdot\right| 4| |=\left|12-\frac{5}{2} \cdot 4\right|=|12-10|=|2|=2$
(b) $g(-4)=\left|3(-4)-\frac{5}{2} \cdot\right|-4| |=\left|-12-\frac{5}{2} \cdot 4\right|=|-12-10|=|-22|=22$
(c) $g(-1)=\left|3(-1)-\frac{5}{2} \cdot\right|-1| |=\left|-3-\frac{5}{2} \cdot 1\right|=\left|-3-\frac{5}{2}\right|=\left|-\frac{11}{2}\right|=\frac{11}{2}$
4. (a) Note that

$$
f(x)=\left|\frac{1}{3} x\right|=\frac{1}{3}|x| .
$$

So, using the definition of $|x|$,

$$
\begin{aligned}
f(x) & =\frac{1}{3}\left\{\begin{array}{cc}
x & \text { for } x \geq 0 \\
-x & \text { for } x<0
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\frac{1}{3} x & \text { for } x \geq 0 \\
-\frac{1}{3} x & \text { for } x<0 .
\end{array}\right.
\end{aligned}
$$

(b) First we simplify:

$$
y=\frac{|4 x|+6}{2}=\frac{4|x|+6}{2}=2|x|+3
$$

so

$$
2|x|=2\left\{\begin{array}{cc}
x & \text { for } x \geq 0 \\
-x & \text { for } x<0
\end{array}=\left\{\begin{array}{cc}
2 x & \text { for } x \geq 0 \\
-2 x & \text { for } x<0
\end{array}\right.\right.
$$

and therefore

$$
y=2|x|+3=\left\{\begin{array}{cc}
2 x+3 & \text { for } x \geq 0 \\
-2 x+3 & \text { for } x<0
\end{array}\right.
$$

(c) We can write

$$
\begin{aligned}
f(x) & =2-\left\{\begin{array}{cc}
x & \text { for } x \geq 0 \\
-x & \text { for } x<0
\end{array}\right. \\
& = \begin{cases}2-x & \text { for } x \geq 0 \\
2+x & \text { for } x<0\end{cases}
\end{aligned}
$$

5. (a) If we divide both sides by -4 then, remembering to change the direction of the inequality, we have

$$
\begin{aligned}
-4 x & >9 \\
x & <-\frac{9}{4}
\end{aligned}
$$

so the solution is $\left(-\infty,-\frac{9}{4}\right)$. Alternatively, you might prefer to begin by rearranging the given inequality:

$$
\begin{aligned}
-4 x & >9 \\
-9 & >4 x \\
-\frac{9}{4} & >x .
\end{aligned}
$$

Of course, the solution is the same either way.
(b) We bring the terms involving x to the righthand side to ensure that the coefficient of x is positive:

$$
\begin{aligned}
4-3 x & \leq x+8 \\
-4 & \leq 4 x \\
-1 & \leq x,
\end{aligned}
$$

so the the solution is $[-1, \infty)$.
(c) We have

$$
\begin{aligned}
2 & \geq \frac{1}{3}(6-x) \\
2 & \geq 2-\frac{1}{3} x \\
\frac{1}{3} x & \geq 0 \\
x & \geq 0 .
\end{aligned}
$$

The solution is $[0, \infty)$.

