MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) We have

$$
\begin{aligned}
\frac{3}{2} x-\frac{1}{3} & =\frac{5}{6} \\
\frac{3}{2} x & =\frac{5}{6}+\frac{1}{3} \\
& =\frac{7}{6} \\
x & =\frac{7}{6} \cdot \frac{2}{3} \\
& =\frac{7}{9} .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
x-1 & =1-x \\
x+x & =1+1 \\
2 x & =2 \\
x & =1 .
\end{aligned}
$$

(c) We begin by multiplying out each side. We have

$$
\begin{aligned}
\frac{1}{4}(x-6) & =-\frac{1}{2}(2 x+3) \\
\frac{1}{4} x-\frac{3}{2} & =-x-\frac{3}{2} \\
\frac{1}{4} x+x & =-\frac{3}{2}+\frac{3}{2} \\
\frac{5}{4} x & =0 \\
x & =0 \cdot \frac{4}{5}=0
\end{aligned}
$$

(d) Again, we must first multiply out each side. Be careful to properly distribute the subtraction on the lefthand side:

$$
-5(x-1)=-5 x-(-5) \cdot 1=-5 x+5
$$

Now we have

$$
\begin{aligned}
1-5(x-1) & =3(x+4)-2 x \\
1-5 x+5 & =3 x+12-2 x \\
6-5 x & =x+12 \\
-5 x-x & =12-6 \\
-6 x & =6 \\
x & =-1 .
\end{aligned}
$$

2. (a) We can write this function as

$$
f(x)=-x+2
$$

so immediately we know that its slope $m=-1$, and $b=2$ so its y-intercept is the point $(0,2)$. To find the x-intercept, we solve

$$
\begin{aligned}
2-x & =0 \\
2 & =x,
\end{aligned}
$$

and therefore the point $(2,0)$ is the x-intercept. Now we can sketch the graph.

(b) First we rewrite the equation in slope-intercept form by solving for y. We have

$$
\begin{aligned}
2 x-3 y-12 & =0 \\
-3 y & =-2 x+12 \\
y & =\frac{2}{3} x-4 .
\end{aligned}
$$

Hence the slope of the line is $m=\frac{2}{3}$ and, since $b=-4$, the y-intercept is $(0,-4)$. Now
we set

$$
\begin{aligned}
\frac{2}{3} x-4 & =0 \\
\frac{2}{3} x & =4 \\
x & =4 \cdot \frac{3}{2}=6,
\end{aligned}
$$

and see that $(6,0)$ is the x-intercept. Finally, we can sketch the graph.

3. (a) Since the line is horizontal, all points on the line have the same y-coordinate. Hence an equation of the line is $y=-5$. (This can also be seen from point-slope or slope-intercept form by setting $m=0$.)
(b) Using slope-intercept form, we have

$$
\begin{aligned}
y & =4 x+b \\
-5 & =4\left(\frac{1}{2}\right)+b \\
-5 & =2+b \\
-7 & =b
\end{aligned}
$$

so an equation of the line is

$$
y=4 x-7
$$

4. The slope of the line is

$$
m=\frac{-6-3}{2-(-1)}=\frac{-6-3}{2+1}=\frac{-9}{3}=-3 .
$$

Using point-slope form with the point $(2,-6)$, then, an equation of the line is

$$
\begin{aligned}
y-(-6) & =-3(x-2) \\
y+6 & =-3 x+6 \\
y & =-3 x .
\end{aligned}
$$

5. (a) We can write the equation of the line ℓ_{0} in slope-intercept form as

$$
\begin{aligned}
3 x+2 y & =-1 \\
2 y & =-3 x-1 \\
y & =-\frac{3}{2} x-\frac{1}{2}
\end{aligned}
$$

so the slope of ℓ_{0} is $-\frac{3}{2}$. Since the desired line ℓ should be parallel to ℓ_{0}, it must have the same slope, namely $m=-\frac{3}{2}$. Then slope-intercept form gives

$$
\begin{aligned}
y & =-\frac{3}{2} x+b \\
5 & =-\frac{3}{2}(-6)+b \\
5 & =9+b \\
-4 & =b
\end{aligned}
$$

and so an equation of ℓ is

$$
y=-\frac{3}{2} x-4
$$

(b) Since the desired line ℓ should now be perpendicular to ℓ_{0}, its slope must be

$$
m=-\frac{1}{-\frac{3}{2}}=\frac{2}{3}
$$

Again using slope-intercept form, we obtain

$$
\begin{aligned}
& y=\frac{2}{3} x+b \\
& 5=\frac{2}{3}(-6)+b \\
& 5=-4+b \\
& 9=b
\end{aligned}
$$

and so an equation of ℓ is

$$
y=\frac{2}{3} x+9
$$

