MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 1

Math 1090
FALL 2009

SOLUTIONS

[3] 1. (a) $(-\infty,-4] \cup[0,3)$
[3]
(b) A function assigns to each x in its domain a unique value $f(x)$. This means that two points cannot each have the same x-coordinate, but different y-coordinates. Thus the points

$$
(-1,1),(0,2),(1,2),(1,3),(2,3)
$$

cannot lie on a curve which represent the graph of a function, because this would imply that $f(1)=2$ and $f(1)=3$ simultaneously.
(c) Note that $-2=\frac{-2}{1}$ so -2 belongs to \mathbb{R}, \mathbb{Q} and \mathbb{Z}.
(d) $-3 \cdot|3-7|=-3 \cdot|-4|=-3 \cdot 4=-12$
(e) The graph of a linear function is always a line, but not a horizontal line (which is the graph of a constant function) nor a vertical line (which is not the graph of a function). Hence a linear function always has exactly one x-intercept, and exactly one y-intercept.
2. We have

$$
\begin{aligned}
\frac{1}{6} x-4 & =3-\frac{2}{9} x \\
\frac{1}{6} x+\frac{2}{9} x & =3+4 \\
\frac{3}{18} x+\frac{4}{18} x & =7 \\
\frac{7}{18} x & =7 \\
x & =18 .
\end{aligned}
$$

The only solution is $x=18$.
[5] 3. We have

$$
\begin{aligned}
5 x & \leq 5-2(7-4 x) \\
5 x & \leq 5-14+8 x \\
14-5 & \leq 8 x-5 x \\
9 & \leq 3 x \\
3 & \leq x .
\end{aligned}
$$

As an interval, this solution is given by $[3, \infty)$.
[3] 4. We define $|x|$ as

$$
|x|=\left\{\begin{array}{cc}
x & \text { for } x \geq 0 \\
-x & \text { for } x<0
\end{array} .\right.
$$

[6] 5. First we need to find the slope of the given line ℓ. We rewrite it in slope-intercept form by solving for y, giving

$$
\begin{aligned}
3 x+4 y+5 & =0 \\
4 y & =-3 x-5 \\
y & =-\frac{3}{4} x-\frac{5}{4} .
\end{aligned}
$$

From this we see that the slope of ℓ is $-\frac{3}{4}$. Thus the slope of any line perpendicular to this line must be

$$
m=-\frac{1}{-\frac{3}{4}}=\frac{4}{3}
$$

The desired line must have equation

$$
\begin{aligned}
y & =\frac{4}{3} x+b \\
-2 & =\frac{4}{3} \cdot 3+b \\
-2 & =4+b \\
-6 & =b
\end{aligned}
$$

so the equation of this line is

$$
y=\frac{4}{3} x-6
$$

[6] 6. This is a linear function, so we know its graph is a line. First we find the x-intercept. We set

$$
\begin{aligned}
-3-2 x & =0 \\
-2 x & =3 \\
x & =-\frac{3}{2}
\end{aligned}
$$

so the x-intercept is the point $\left(-\frac{3}{2}, 0\right)$. Next, observe that

$$
f(0)=-3-2 \cdot 0=-3,
$$

so the y-intercept is the point $(0,-3)$. Now we can plot these points and sketch the graph.

Since the function is linear, its domain is $D=\mathbb{R}$ and its range is $R=\mathbb{R}$.

