MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) Observing that $\sqrt{4}=2$, the only natural number in the set is $\sqrt{4}$.
(b) The integers in the set are $0, \sqrt{4},-5,-102$.
(c) The rational numbers in the set are $0, \sqrt{4},-5,-102, \frac{8}{3}, 7.45,-\frac{1}{4}$.
(d) The irrational numbers in the set are $\frac{\pi}{2}, \sqrt{3}$.
2. (a) The inequality in set B is strict, which is not the case in set A. This means that $2 \in A$ but $2 \notin B$. Otherwise, the two sets are identical.
(b) Set A consists of all real numbers less than or equal to 2 . Set C consists only of the integers less than or equal to 2 , which means that we can write

$$
C=\{2,1,0,-1,-2,-3, \ldots\} .
$$

As a result, there are many rational and irrational numbers which are members of A but not members of C. For instance, $\frac{1}{2} \in A$ but $\frac{1}{2} \notin C$.
3. (a) This is equivalent to the interval $[-2,2]$. It can be represented by

(b) This is equivalent to the interval (1,3]. It can be represented by

(c) This is equivalent to the interval $[-1, \infty)$. It can be represented by

(d) This is equivalent to the interval $(-\infty, 0] \cup\left(\frac{2}{3}, 3\right)$. It can be represented by

