MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

For practice only. Not to be submitted.

1. Find the particular solution to each initial value problem.
(a) $t^{2} y^{2} \frac{d y}{d t}=1, \quad y(3)=1$
(b) $t^{2} y^{2} \frac{d y}{d t}=\sqrt{1-y^{2}}, \quad y(-2)=0$
(c) $\frac{d y}{d t}-t y^{2}-4 t=0, \quad y(1)=2$
(d) $y \frac{d y}{d t}-e^{t+y}=0, \quad y(0)=0$
(e) $\cos (y) \frac{d y}{d t}+\csc (y)=0, \quad y\left(-\frac{1}{8}\right)=\frac{\pi}{6}$
2. Once we have solved a differential equation, we can apply the solution to solve problems involving any relevant scenario. Consider a population of parakeets which has been introduced to a tropical island, where they are growing at an exponential rate. Then we know the population can be modelled by the function

$$
y(t)=y_{0} e^{k t}
$$

where $y(t)$ is the number of parakeets. Suppose t is measured in years, y_{0} is the size of the initial population, and k is a constant of proportionality. Two years later, a group of "castaways" arrives on the island for a reality game show. During a challenge, they count roughly 50 parakeets. Three years later, some of the "castaways" return to the island for an "all-star" edition of the show. They discover that there are now about 150 parakeets.
(a) Determine the value of y_{0}.
(b) Determine the size of the parakeet population after another seven years have elapsed (that is, twelve years after the parakeets were introduced to the island).

