MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 3.2

Math 1001 Worksheet
Winter 2023

For practice only. Not to be submitted.

1. Evaluate each of the following trigonometric integrals.
(a) $\int_{0}^{\frac{\pi}{9}} \sin ^{2}(6 x) \cos ^{3}(6 x) d x$
(b) $\int \sin ^{3}(x) \cos ^{8}(x) d x$
(c) $\int \sin ^{2}(x) \cos ^{5}(x) d x$
(d) $\int \frac{\cos ^{3}(\ln (x))}{x} d x$
(e) $\int x \sin ^{2}(x) d x$
(f) $\int \frac{1-\tan ^{2}(x)}{\sec ^{2}(x)} d x$
2. Strategies similar to those introduced for integrals of the form $\int \sin ^{m}(x) \cos ^{n}(x) d x$ can also work for combinations of $\sec (x)$ and $\tan (x)$ functions, and for combinations of $\csc (x)$ and $\cot (x)$.
(a) Consider $\int \tan ^{5}(x) \sec ^{5}(x) d x$. Evaluate the integral as follows:

- set aside a factor of $\sec (x) \tan (x)$
- transform the remaining factors of $\tan (x)$ into $\sec (x)$ using the identity $\tan ^{2}(x)+1=$ $\sec ^{2}(x)$
- use u-substitution with $u=\sec (x)$.
(b) Consider $\int \frac{\cos ^{2}(x)}{\sin ^{6}(x)} d x$. Although this integral involves $\sin (x)$ and $\cos (x)$ functions, it cannot be evaluated using the techniques introduced in class. Show that it can be evaluated as follows:
- rewrite the integrand in terms of $\cot (x)$ and $\csc (x)$ functions
- set aside a factor of $\csc ^{2}(x)$
- transform the remaining factors of $\csc (x)$ into $\cot (x)$ using the identity $1+\cot ^{2}(x)=$ $\csc ^{2}(x)$
- use u-substitution with $u=\cot (x)$.

