MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) We have

$$
\begin{aligned}
t^{2} y^{2} \frac{d y}{d t} & =1 \\
y^{2} d y & =t^{-2} d t \\
\int y^{2} d y & =\int t^{-2} d t \\
\frac{1}{3} y^{3} & =-\frac{1}{t}+C \\
y^{3} & =C-\frac{3}{t} \\
y & =\sqrt[3]{C-\frac{3}{t}}
\end{aligned}
$$

Since $y(3)=1$, we obtain

$$
y(3)=\sqrt[3]{C-1}=1 \quad \Longrightarrow \quad C-1=1
$$

so $C=2$. Thus the particular solution is

$$
y=\sqrt[3]{2-\frac{3}{t}}
$$

(b) We have

$$
\begin{aligned}
t^{2} y^{2} \frac{d y}{d t} & =\sqrt{1-y^{2}} \\
\frac{y^{2}}{\sqrt{1-y^{2}}} d y & =t^{-2} d t \\
\int \frac{y^{2}}{\sqrt{1-y^{2}}} d y & =\int t^{-2} d t
\end{aligned}
$$

The integral on the right is elementary:

$$
\int t^{-2} d t=-\frac{1}{t}+C
$$

However, the integral on the left requires trigonometric substitution. We let $y=\sin (\theta)$ so $d y=\cos (\theta) d \theta$ and

$$
\sqrt{1-y^{2}}=\sqrt{1-\sin ^{2}(\theta)}=\sqrt{\cos ^{2}(\theta)}=\cos (\theta)
$$

Hence

$$
\begin{aligned}
\int \frac{y^{2}}{\sqrt{1-y^{2}}} d y & =\int \frac{\sin ^{2}(\theta)}{\cos (\theta)} \cdot \cos (\theta) d \theta \\
& =\int \sin ^{2}(\theta) d \theta \\
& =\int \frac{1-\cos (2 \theta)}{2} d \theta \\
& =\frac{1}{2}\left[\theta-\frac{1}{2} \sin (2 \theta)\right]+C \\
& =\frac{1}{2} \theta-\frac{1}{2} \sin (\theta) \cos (\theta)+C \\
& =\frac{1}{2} \arcsin (y)-\frac{1}{2} y \sqrt{1-y^{2}}+C
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{1}{2} \arcsin (y)-\frac{1}{2} y \sqrt{1-y^{2}} & =-\frac{1}{t}+C \\
\arcsin (y)-y \sqrt{1-y^{2}} & =-\frac{2}{t}+C
\end{aligned}
$$

Note that it is not feasible to write the general solution in an explicit form. Nonetheless, since $y(-2)=0$, we have

$$
\arcsin (0)-0=1+C \quad \Longrightarrow \quad C=-1
$$

Hence the particular solution is given implicitly by

$$
\arcsin (y)-y \sqrt{1-y^{2}}=-\frac{2}{t}-1
$$

(c) We can separate the variables by writing

$$
\begin{aligned}
\frac{d y}{d t}-t y^{2}-4 t & =0 \\
\frac{d y}{d t} & =t y^{2}+4 t \\
\frac{d y}{d t} & =t\left(y^{2}+4\right) \\
\frac{1}{y^{2}+4} d y & =t d t \\
\int \frac{1}{y^{2}+4} d y & =\int t d t \\
\frac{1}{2} \arctan \left(\frac{y}{2}\right) & =\frac{1}{2} t^{2}+C .
\end{aligned}
$$

Since $y(1)=2$, we have

$$
\frac{1}{2} \arctan (1)=\frac{1}{2}+C \quad \Longrightarrow \quad C=\frac{1}{2} \cdot \frac{\pi}{4}-\frac{1}{2}=\frac{\pi}{8}-\frac{1}{2}
$$

Thus we can write the particular solution as

$$
\begin{aligned}
\frac{1}{2} \arctan \left(\frac{y}{2}\right) & =\frac{1}{2} t^{2}+\frac{\pi}{8}-\frac{1}{2} \\
\arctan \left(\frac{y}{2}\right) & =t^{2}+\frac{\pi}{4}-1 \\
\frac{y}{2} & =\tan \left(t^{2}+\frac{\pi}{4}-1\right) \\
y & =2 \tan \left(t^{2}+\frac{\pi}{4}-1\right)
\end{aligned}
$$

(d) We have

$$
\begin{aligned}
y \frac{d y}{d t}-e^{t+y} & =0 \\
y \frac{d y}{d t} & =e^{t} e^{y} \\
y e^{-y} d y & =e^{t} d t \\
\int y e^{-y} d y & =\int e^{t} d t
\end{aligned}
$$

The integral on the right is elementary:

$$
\int e^{t} d t=e^{t}+C
$$

The integral on the left requires integration by parts, with $w=y$ so $d w=d y$ and $d v=e^{-y} d y$ so $v=-e^{-y}$. Thus

$$
\begin{aligned}
\int y e^{-y} d y & =-y e^{-y}+\int e^{-y} d y \\
& =-y e^{-y}-e^{-y}+C
\end{aligned}
$$

Now the general solution is given by

$$
-y e^{-y}-e^{-y}=e^{t}+C
$$

Since $y(0)=0$, we have

$$
0-1=1+C \quad \Longrightarrow \quad C=-2
$$

and so the particular solution is given implicitly by

$$
-y e^{-y}-e^{-y}=e^{t}-2 \quad \text { or } \quad y e^{-y}+e^{-y}=2-e^{t}
$$

(e) We have

$$
\begin{aligned}
\cos (y) \frac{d y}{d t}+\csc (y) & =0 \\
\cos (y) \frac{d y}{d t} & =-\csc (y) \\
\sin (y) \cos (y) d y & =-d t \\
\int \sin (y) \cos (y) d y & =-\int d t
\end{aligned}
$$

The integral on the right is elementary:

$$
-\int d t=-t+C
$$

The integral on the left requires u-substitution, with $u=\sin (y)$ so $d u=\cos (y) d y$. Thus

$$
\int \sin (y) \cos (y) d y=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \sin ^{2}(y)+C
$$

Then the general solution is given by

$$
\frac{1}{2} \sin ^{2}(y)=-t+C
$$

Since $y\left(-\frac{1}{8}\right)=\frac{\pi}{6}$, we have

$$
\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{8}+C \quad \Longrightarrow \quad \frac{1}{8}=\frac{1}{8}+C \quad \Longrightarrow \quad C=0
$$

Hence the particular solution is

$$
\begin{aligned}
\frac{1}{2} \sin ^{2}(y) & =-t \\
\sin ^{2}(y) & =-2 t \\
\sin (y) & =\sqrt{-2 t} \\
y & =\arcsin (\sqrt{-2 t}) .
\end{aligned}
$$

2. (a) Since

$$
y(t)=y_{0} e^{k t}
$$

we know that

$$
y(2)=y_{0} e^{2 k}=50 \quad \text { and } \quad y(5)=y_{0} e^{5 k}=150
$$

Dividing the second by the first gives

$$
\frac{y_{0} e^{5 k}}{y_{0} e^{2 k}}=\frac{150}{50} \quad \Longrightarrow \quad e^{3 k}=3 \quad \Longrightarrow \quad k=\frac{1}{3} \ln (3)
$$

Hence using $y(2)=50$ we have

$$
50=y_{0} e^{\frac{2}{3} \ln (3)} \quad \Longrightarrow \quad y_{0}=50 e^{-\frac{2}{3} \ln (3)}=50 \cdot 3^{-\frac{2}{3}}=\frac{50}{\sqrt[3]{9}} \approx 24
$$

So there were about 24 parakeets originally on the island.
(b) We now have

$$
y(t)=\frac{50}{\sqrt[3]{9}} e^{\frac{1}{3} \ln (3) t}
$$

so

$$
y(12)=\frac{50}{\sqrt[3]{9}} e^{\frac{1}{3} \ln (3) \cdot 12}=\frac{50}{\sqrt[3]{9}} e^{4 \ln (3)}=\frac{50}{\sqrt[3]{9}} \cdot 3^{4}=\frac{4050}{\sqrt[3]{9}} \approx 1947 .
$$

After seven more years, there will be approximately 1947 parakeets on the island!

