MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4

Due: Monday, March 13th, 2023 at 11:59pm. See the Gradescope Handout for submission information.

Note: You should complete Worksheet 2.1 and Worksheet 2.2 before you work on this assignment.

1. Use the limit of a Riemann sum to determine the area A of each of the following regions. (In each case, use a regular partition and let the sample point $x_{i}^{*}=x_{i}$, that is, the right endpoint of the i th subinterval.)
(a) The region under the curve $f(x)=x^{3}+5$ on the interval $[-1,2]$.
(b) The region under the curve $f(x)=(3 x-1)^{2}$ on the interval $[0,5]$.
2. Consider the region R which lies under the curve $f(x)=x^{2}$ and between the y-axis and the line $x=b$. Use the limit of a Riemann sum to show that the area of R is given by $A=\frac{b^{3}}{3}$ for any $b>0$.
3. Evaluate $\int_{2}^{3} x^{2}(4 x+3) d x$ by computing the limit of a Riemann sum.
