MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 4.1

Math 1001 Worksheet

WINTER 2024

For practice only. Not to be submitted.

1. Determine which of the following is a solution of

$$t^2 \frac{d^2 y}{dt^2} - t \frac{dy}{dt} + y = 0$$

by substituting directly into the differential equation.

- (a) y = t
- (b) $y = \ln(t)$
- (c) $y = t \ln(t)$

2. Find the particular solution to each initial value problem.

(a)
$$\frac{dy}{dt} + \sqrt{t} = 9$$
, $y(0) = 4$

(b)
$$\cos^2(t)\frac{dy}{dt} + \cos(t) - 1 = 0$$
, $y(0) = 0$

(c)
$$t^2 f'(t) = \ln(t)$$
, $f(1) = 2$

(d)
$$f''(t) - \frac{4}{t^2} = 0$$
, $f(-1) = 3$ and $f'(1) = 0$

(e)
$$f''(t) = 3t - 3$$
, $f(0) = -5$ and $f(2) = -7$

- 3. Find all functions f(x) such that $f'(x) = 9x^2$ and the line y = 36x is tangent to the graph of f(x).
- 4. A toy rocket is launched vertically upward from the ground.
 - (a) With what initial velocity must the rocket be launched in order to reach a maximum height of 4410 metres?
 - (b) How long does it take the rocket to achieve this height?
 - (c) What will the rocket's height be after 10 seconds?