MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 4.1

Math 1001 Worksheet
Winter 2024

For practice only. Not to be submitted.

1. Determine which of the following is a solution of

$$
t^{2} \frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}+y=0
$$

by substituting directly into the differential equation.
(a) $y=t$
(b) $y=\ln (t)$
(c) $y=t \ln (t)$
2. Find the particular solution to each initial value problem.
(a) $\frac{d y}{d t}+\sqrt{t}=9, \quad y(0)=4$
(b) $\cos ^{2}(t) \frac{d y}{d t}+\cos (t)-1=0, \quad y(0)=0$
(c) $t^{2} f^{\prime}(t)=\ln (t), \quad f(1)=2$
(d) $f^{\prime \prime}(t)-\frac{4}{t^{2}}=0, \quad f(-1)=3$ and $f^{\prime}(1)=0$
(e) $f^{\prime \prime}(t)=3 t-3, \quad f(0)=-5$ and $f(2)=-7$
3. Find all functions $f(x)$ such that $f^{\prime}(x)=9 x^{2}$ and the line $y=36 x$ is tangent to the graph of $f(x)$.
4. A toy rocket is launched vertically upward from the ground.
(a) With what initial velocity must the rocket be launched in order to reach a maximum height of 4410 metres?
(b) How long does it take the rocket to achieve this height?
(c) What will the rocket's height be after 10 seconds?

