MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

For practice only. Not to be submitted.

1. Evaluate each of the following trigonometric integrals.

(a)
$$\int_{0}^{\frac{\pi}{9}} \sin^{2}(6x) \cos^{3}(6x) dx$$

(b)
$$\int \sin^{3}(x) \cos^{8}(x) dx$$

(c)
$$\int \sin^{2}(x) \cos^{5}(x) dx$$

(d)
$$\int \frac{\cos^{3}(\ln(x))}{x} dx$$

(e)
$$\int x \sin^{2}(x) dx$$

(f)
$$\int \frac{1 - \tan^{2}(x)}{\sec^{2}(x)} dx$$

- 2. Strategies similar to those introduced for integrals of the form $\int \sin^m(x) \cos^n(x) dx$ can also work for combinations of $\sec(x)$ and $\tan(x)$ functions, and for combinations of $\csc(x)$ and $\cot(x)$.
 - (a) Consider $\int \tan^5(x) \sec^5(x) dx$. Evaluate the integral as follows:
 - set aside a factor of $\sec(x)\tan(x)$
 - transform the remaining factors of tan(x) into sec(x) using the identity $tan^2(x)+1 = sec^2(x)$
 - use *u*-substitution with $u = \sec(x)$.
 - (b) Consider $\int \frac{\cos^2(x)}{\sin^6(x)} dx$. Although this integral involves $\sin(x)$ and $\cos(x)$ functions, it cannot be evaluated using the techniques introduced in class. Show that it can be evaluated as follows:
 - rewrite the integrand in terms of $\cot(x)$ and $\csc(x)$ functions
 - set aside a factor of $\csc^2(x)$
 - transform the remaining factors of $\csc(x)$ into $\cot(x)$ using the identity $1 + \cot^2(x) = \csc^2(x)$
 - use *u*-substitution with $u = \cot(x)$.