MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.1

Math 1001 Worksheet

WINTER 2024

For practice only. Not to be submitted.

- 1. Write each of the following sums using sigma notation (with i = 1 as the lower bound of summation).
 - (a) $\frac{2}{5} + \frac{4}{10} + \frac{8}{15} + \frac{16}{20} + \dots + \frac{2^n}{5n}$ (b) $y^2 + 8y^2 + 27y^2 + 64y^2 + \dots + n^3y^2$
- 2. Use the summation formulas to evaluate each of the following sums.

(a)
$$\sum_{i=1}^{n} (4i+3)$$

(b) $\sum_{i=1}^{n} (i^3-6i)$
(c) $\sum_{i=1}^{n} (3i+1)^2$

- 3. Consider the region R which lies between the graph of f(x) = 2 x and the x-axis, on the interval [-1, 1].
 - (a) Determine the width Δx of each subinterval in a regular partition of [-1, 1].
 - (b) Give an expression for the right endpoint x_i of the *i*th subinterval. Use this to find formulas for the point m_i and M_i at which f(x) attains its minimum and maximum values on the *i*th subinterval.
 - (c) Determine $f(m_i)$ and $f(M_i)$.
 - (d) Find formulas for the lower sum s(n) and the upper sum S(n).
 - (e) Estimate the area A of the region R by finding the lower and upper sums with n = 5 subintervals. Give your answers to one decimal place.
 - (f) Estimate the area A of the region R by finding the lower and upper sums with n = 500 subintervals. Give your answers to two decimal places.
 - (g) Find the true value of A by taking the limit of the formulas you derived in part (d) as $n \to \infty$, and showing that these limits are equal.
- 4. Use the limit of a Riemann sum to determine the area A of the region which lies below the curve $f(x) = 3 + 3x x^2$, above the x-axis, to the left of x = -1 and to the right of x = 3.