Name MUN Number
[7] 1. (a) Use the definition of the definite integral as a limit of a sum to evaluate

$$
\int_{-1}^{1}\left(6 x^{2}-x+2\right) d x
$$

[3] (b) Check your answer to part (a) using the Fundamental Theorem of Calculus.
[15] 2. Evaluate each of the following definite integrals.
(a) $\int_{0}^{3} \frac{x^{2}+4}{x^{2}+9} d x$
(b) $\int_{0}^{4} \frac{3 x}{\sqrt{x^{2}+9}} d x$
(c) $\int_{-\frac{1}{2}}^{2} f(x) d x$ where $f(x)=\left\{\begin{array}{cl}e^{2 x}, & \text { for } x<0 \\ \cos (\pi x), & \text { for } 0 \leq x<1 \\ -\frac{1}{x^{2}}, & \text { for } x \geq 1\end{array}\right.$
[5] 3. Consider the function

$$
g(x)=\int_{x^{2}}^{x} t^{2} \cos \left(t^{4}\right) d t
$$

Find and simplify $g^{\prime}(x)$.
[10] 4. Consider the region R bounded by the curves $y=2-\frac{1}{2} x, y=\sqrt{x-1}$ and the x-axis.
(a) Sketch the graph of the region R on the axes provided.

(b) Set up, but DO NOT EVALUATE, an integral (or a sum of integrals) with respect to x which represents the area of R.
(c) Set up, but DO NOT EVALUATE, an integral (or a sum of integrals) with respect to y which represents the area of R.

