MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

TEST 2	MATHEMATICS 1001-002	March 22nd, 2024
Name	MUN Number	

[7] 1. (a) Use the definition of the definite integral as a limit of a sum to evaluate

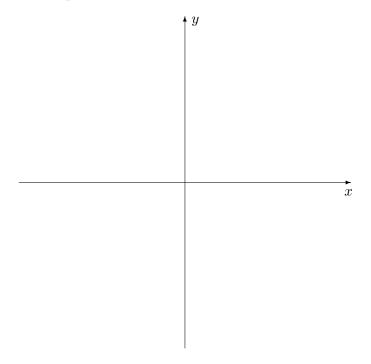
$$\int_{-1}^{1} (6x^2 - x + 2) \, dx.$$

[3] (b) Check your answer to part (a) using the Fundamental Theorem of Calculus.

[15] 2. Evaluate each of the following definite integrals.

(a)
$$\int_0^3 \frac{x^2 + 4}{x^2 + 9} \, dx$$

(b)
$$\int_0^4 \frac{3x}{\sqrt{x^2 + 9}} \, dx$$


(c)
$$\int_{-\frac{1}{2}}^{2} f(x) dx$$
 where $f(x) = \begin{cases} e^{2x}, & \text{for } x < 0 \\ \cos(\pi x), & \text{for } 0 \le x < 1 \\ -\frac{1}{x^2}, & \text{for } x \ge 1 \end{cases}$

[5] 3. Consider the function

$$g(x) = \int_{x^2}^{x} t^2 \cos(t^4) dt.$$

Find and simplify g'(x).

- [10] 4. Consider the region R bounded by the curves $y = 2 \frac{1}{2}x$, $y = \sqrt{x-1}$ and the x-axis.
 - (a) Sketch the graph of the region R on the axes provided.

(b) Set up, but **DO NOT EVALUATE**, an integral (or a sum of integrals) with respect to x which represents the area of R.

(c) Set up, but $\underline{\mathbf{DO\ NOT\ EVALUATE}}$, an integral (or a sum of integrals) with respect to y which represents the area of R.