MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 4.5

Math 1001 Worksheet
Winter 2024

SOLUTIONS

1. (a) Observe that $f(x)<0$ when $0 \leq x<1$. Hence it is not a non-negative function for all x, and therefore it is not a probability density function.
(b) We can see that $f(x) \geq 0$ for all x, so we evaluate

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{8} \frac{1}{(x+4)^{3}} d x \\
& =\left[-\frac{1}{2(x+4)^{2}}\right]_{0}^{8} \\
& =-\frac{1}{288}+\frac{1}{32} \\
& =\frac{1}{36}
\end{aligned}
$$

Since $\int_{-\infty}^{\infty} f(x) d x \neq 1$, this is not a probability density function.
(c) Again we can see that $f(x) \geq 0$ for all x, so we evaluate

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{8} \frac{18 x}{(x+4)^{3}} d x
$$

We let $u=x+4$ so $d u=d x$ and $x=u-4$. When $x=0, u=4$. When $x=8, u=12$. The integral becomes

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =18 \int_{4}^{12} \frac{u-4}{u^{3}} d u \\
& =18 \int_{4}^{12}\left(\frac{1}{u^{2}}-\frac{4}{u^{3}}\right) d u \\
& =18\left[-\frac{1}{u}+\frac{2}{u^{2}}\right]_{4}^{12} \\
& =18\left[-\frac{1}{12}+\frac{1}{72}+\frac{1}{4}-\frac{1}{8}\right] \\
& =1
\end{aligned}
$$

Hence this is a probability density function.
2. (a) Note that $f(x) \geq 0$ for all x as long as $k \geq 0$, and that

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{\infty} \frac{k}{x^{2}+1} d x \\
& =\int_{-\infty}^{0} \frac{k}{x^{2}+1} d x+\int_{0}^{\infty} \frac{k}{x^{2}+1} d x \\
& =k \lim _{T \rightarrow-\infty} \int_{T}^{0} \frac{1}{x^{2}+1} d x+k \lim _{S \rightarrow \infty} \int_{0}^{S} \frac{1}{x^{2}+1} d x \\
& =k \lim _{T \rightarrow-\infty}[\arctan (x)]_{T}^{0}+k \lim _{S \rightarrow \infty}[\arctan (x)]_{0}^{S} \\
& =k \lim _{T \rightarrow-\infty}[0-\arctan (T)]+k \lim _{S \rightarrow \infty}[\arctan (S)-0] \\
& =k \cdot \frac{\pi}{2}+k \cdot \frac{\pi}{2} \\
& =k \pi
\end{aligned}
$$

Thus we must have $k \pi=1$ and so $k=\frac{1}{\pi}$.
(b) We have

$$
\begin{aligned}
P(-\sqrt{3} \leq X \leq \sqrt{3}) & =\int_{-\sqrt{3}}^{\sqrt{3}} f(x) d x \\
& =\frac{1}{\pi} \int_{-\sqrt{3}}^{\sqrt{3}} \frac{1}{x^{2}+1} d x \\
& =\frac{1}{\pi}[\arctan (x)]_{-\sqrt{3}}^{\sqrt{3}} \\
& =\frac{1}{\pi}[\arctan (\sqrt{3})-\arctan (-\sqrt{3})] \\
& =\frac{1}{\pi}\left[\frac{\pi}{3}+\frac{\pi}{3}\right] \\
& =\frac{2}{3}
\end{aligned}
$$

3. (a) Note that $f(x) \geq 0$ for all x as long as $k \geq 0$, and that

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =k \int_{0}^{\infty} x e^{-2 x} d x \\
& =k \lim _{T \rightarrow \infty} \int_{0}^{T} x e^{-2 x} d x
\end{aligned}
$$

We use integration by parts with $w=x$ so $d w=d x$, and $d v=e^{-2 x} d x$ so $v=-\frac{1}{2} e^{-2 x}$.

Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =k \lim _{T \rightarrow \infty}\left(\left[-\frac{1}{2} x e^{-2 x}\right]_{0}^{T}+\frac{1}{2} \int_{0}^{T} e^{-2 x} d x\right) \\
& =k \lim _{T \rightarrow \infty}\left[-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}\right]_{0}^{T} \\
& =k \lim _{T \rightarrow \infty}\left[-\frac{1}{2} T e^{-2 T}-\frac{1}{4} e^{-2 T}+0+\frac{1}{4}\right] \\
& =\frac{1}{4} k-\frac{1}{2} k \lim _{T \rightarrow \infty} \frac{T}{e^{2 T}} \\
& \stackrel{H}{=} \frac{1}{4} k-\frac{1}{2} k \lim _{T \rightarrow \infty} \frac{1}{2 e^{2 T}} \\
& =\frac{1}{4} k-0 \\
& =\frac{1}{4} k .
\end{aligned}
$$

Hence we must have $\frac{1}{4} k=1$ and so $k=4$.
(b) We have

$$
\begin{aligned}
P(0 \leq X \leq 2) & =\int_{0}^{1} f(x) d x \\
& =4 \int_{0}^{2} x e^{-2 x} d x \\
& =4\left[-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}\right]_{0}^{2} \\
& =4\left[-e^{-4}-\frac{1}{4} e^{-4}+\frac{1}{4}\right] \\
& =1-5 e^{-4} \\
& \approx 0.9
\end{aligned}
$$

4. (a) Using the same substitution as in Question 1(c), this probability is given by

$$
\begin{aligned}
P(3 \leq X \leq 5) & =\int_{3}^{5} f(x) d x \\
& =18 \int_{3}^{5} \frac{x}{(x+4)^{3}} d x \\
& =18 \int_{7}^{9}\left(\frac{1}{u^{2}}-\frac{4}{u^{3}}\right) d u \\
& =18\left[-\frac{1}{u}+\frac{2}{u^{2}}\right]_{7}^{9} \\
& =18\left[-\frac{1}{9}+\frac{2}{81}+\frac{1}{7}-\frac{2}{49}\right] \\
& =\frac{124}{441} .
\end{aligned}
$$

Hence the likelihood is about 28.1% that the total viewing time will be between 3 minutes and 5 minutes.
(b) Using the same substitution as in Question 1(c), this probability is given by

$$
\begin{aligned}
P(0 \leq X \leq 1) & =\int_{0}^{1} f(x) d x \\
& =18 \int_{0}^{1} \frac{x}{(x+4)^{3}} \\
, d x & \\
& =18 \int_{4}^{5}\left(\frac{1}{u^{2}}-\frac{4}{u^{3}}\right) d u \\
& =18\left[-\frac{1}{u}+\frac{2}{u^{2}}\right]_{4}^{5} \\
& =18\left[-\frac{1}{5}+\frac{2}{25}+\frac{1}{4}-\frac{1}{8}\right] \\
& =\frac{9}{100} .
\end{aligned}
$$

Hence there's a 9% likelihood that the total viewing time will be less than 1 minute.
(c) Using the same substitution as in Question 1(c), this probability is given by

$$
\begin{aligned}
P(6 \leq X \leq 8) & =\int_{6}^{8} f(x) d x \\
& =18 \int_{6}^{8} \frac{x}{(x+4)^{3}} \\
, d x & \\
& =18 \int_{10}^{12}\left(\frac{1}{u^{2}}-\frac{4}{u^{3}}\right) d u \\
& =18\left[-\frac{1}{u}+\frac{2}{u^{2}}\right]_{10}^{12} \\
& =18\left[-\frac{1}{12}+\frac{1}{72}+\frac{1}{10}-\frac{1}{50}\right] \\
& =\frac{19}{100} .
\end{aligned}
$$

Hence there's a 19% likelihood that the total viewing time will be greater than 6 minutes.
(d) We have

$$
\begin{aligned}
\mu & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{0}^{8} x \cdot \frac{18 x}{(x+4)^{3}} d x \\
& =18 \int_{0}^{8} \frac{x^{2}}{(x+4)^{3}} d x
\end{aligned}
$$

Let $u=x+4$ so $d u=d x$ and $x^{2}=(u-4)^{2}$. When $x=0, u=4$. When $x=8, u=12$.

The integral becomes

$$
\begin{aligned}
\mu & =18 \int_{4}^{12} \frac{(u-4)^{2}}{u^{3}} d u \\
& =18 \int_{4}^{12} \frac{u^{2}-8 u+16}{u^{3}} d u \\
& =18 \int_{4}^{12}\left(\frac{1}{u}-\frac{8}{u^{2}}+\frac{16}{u^{3}}\right) d u \\
& =18\left[\ln |u|+\frac{8}{u}-\frac{8}{u^{2}}\right]_{4}^{12} \\
& =18\left[\ln (12)+\frac{2}{3}-\frac{1}{18}-\ln (4)-2+\frac{1}{2}\right] \\
& =18 \ln (12)-18 \ln (4)-16 \\
& \approx 3.8 .
\end{aligned}
$$

5. (a) Clearly, $f(x) \geq 0$ for all x, and furthermore

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{5} \frac{1}{5} d x \\
& =\frac{1}{5}[x]_{0}^{5} \\
& =\frac{1}{5} \cdot 5 \\
& =1 .
\end{aligned}
$$

Hence $f(x)$ is a probability density function.
Next,

$$
\begin{aligned}
\mu & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{5} \frac{1}{5} x d x \\
& =\frac{1}{5}\left[\frac{1}{2} x^{2}\right]_{0}^{5} \\
& =\frac{1}{5}\left[\frac{25}{2}-0\right] \\
& =\frac{5}{2} .
\end{aligned}
$$

Note that this makes sense, since it's the midpoint of the interval $[0,5]$.
(b) We want a density function such that, for some constant k,

$$
f(x)=\left\{\begin{array}{cl}
k, & \text { for } 0 \leq x<4 \\
2 k, & \text { for } 4 \leq x \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
$$

Obviously, $f(x) \geq 0$ for all x as long $k \geq 0$. Then we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{4} k d x+\int_{4}^{5} 2 k d x \\
& =k[x]_{0}^{4}+2 k[x]_{4}^{5} \\
& =k(4-0)+2 k(5-4) \\
& =6 k
\end{aligned}
$$

so we need $6 k=1$ therefore $k=\frac{1}{6}$. Hence a suitable probability density function is given by

$$
f(x)= \begin{cases}\frac{1}{6}, & \text { for } 0 \leq x<4 \\ \frac{1}{3}, & \text { for } 4 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}
$$

Finally,

$$
\begin{aligned}
\mu & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\frac{1}{6} \int_{0}^{4} x d x+\frac{1}{3} \int_{4}^{5} x d x \\
& =\frac{1}{6}\left[\frac{1}{2} x^{2}\right]_{0}^{4}+\frac{1}{3}\left[\frac{1}{2} x^{2}\right]_{4}^{5} \\
& =\frac{1}{6}[8-0]+\frac{1}{3}\left[\frac{25}{2}-8\right] \\
& =\frac{17}{6} .
\end{aligned}
$$

In other words, the effect of Ruby's error is to shift the mean value of the probability distribution from 2.5 to $2.8 \overline{3}$.

