MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) The equation becomes

$$
\begin{aligned}
\frac{t}{y^{2}+1} \frac{d y}{d t} & =-\frac{t^{2}}{e^{t}} \\
\frac{1}{y^{2}+1} d y & =-t e^{-t} d t \\
\int \frac{1}{y^{2}+1} d y & =-\int t e^{-t} d t \\
\arctan (y) & =-\int t e^{-t} d t
\end{aligned}
$$

The integral on the righthand side can be evaluated using integration by parts, with $w=t$ so $d w=d t$ and $d v=e^{-t} d t$ so $v=-e^{-t}$. Thus

$$
\int t e^{-t} d t=-t e^{-t}+\int e^{-t} d t=-t e^{-t}-e^{-t}+C
$$

and so the solution is

$$
\arctan (y)=-\left(-t e^{-t}-e^{-t}\right)+C \quad \Longrightarrow \quad y=\tan \left(t e^{-t}+e^{-t}+C\right)
$$

(b) We can rewrite the given equation as

$$
\begin{aligned}
\frac{5}{(y+2)(y-3)} d y & =\frac{1}{\cos (t) \csc (t)} d t \\
\frac{5}{(y+2)(y-3)} d y & =\frac{1}{\cos (t) \cdot \frac{1}{\sin (t)}} d t \\
\frac{5}{(y+2)(y-3)} d y & =\frac{\sin (t)}{\cos (t)} d t \\
\frac{5}{(y+2)(y-3)} d y & =\tan (t) d t \\
\int \frac{5}{(y+2)(y-3)} d y & =\int \tan (t) d t \\
\int \frac{5}{(y+2)(y-3)} d y & =-\ln |\cos (t)|+C .
\end{aligned}
$$

The lefthand side requires the method of partial fractions. We know that

$$
\begin{aligned}
\frac{5}{(y+2)(y-3)} & =\frac{A}{y+2}+\frac{B}{y-3} \\
5 & =A(y-3)+B(y+2)
\end{aligned}
$$

When $y=-2$, we have $5=-5 A$ so $A=-1$. When $y=3$, we have $5=5 B$ so $B=1$. Thus

$$
\int \frac{5}{(y+2)(y-3)} d y=\int\left(\frac{-1}{y+2}+\frac{1}{y-3}\right) d y=\ln |y-3|-\ln |y+2|+C .
$$

Hence the solution to the differential equation is given by the implicit form

$$
\ln |y-3|-\ln |y+2|=-\ln |\cos (t)|+C
$$

This is sufficient, but note that we can simplify this to an extent. If we replace C with $\ln |C|$ and apply the properties of logarithms, we have

$$
\begin{aligned}
\ln |y-3|-\ln |y+2| & =-\ln |\cos (t)|+\ln |C| \\
\ln \left|\frac{y-3}{y+2}\right| & =\ln \left|\frac{C}{\cos (t)}\right| \\
\frac{y-3}{y+2} & =\frac{C}{\cos (t)},
\end{aligned}
$$

which is a bit simpler than our original answer.
2. The differential equation is separable, so it can be rewritten as

$$
\begin{aligned}
t \frac{d y}{d t} & =\sqrt{4-y^{2}} \\
\frac{1}{\sqrt{4-y^{2}}} d y & =\frac{1}{t} d t \\
\int \frac{1}{\sqrt{4-y^{2}}} d y & =\int \frac{1}{t} d t \\
\arcsin \left(\frac{y}{2}\right) & =\ln |t|+C
\end{aligned}
$$

Since $y(1)=2$, we have

$$
\begin{aligned}
\arcsin (1) & =\ln (1)+C \\
\frac{\pi}{2} & =C
\end{aligned}
$$

Thus the particular solution is

$$
\arcsin \left(\frac{y}{2}\right)=\ln |t|+\frac{\pi}{2} \quad \text { or } \quad y=2 \sin \left(\ln |t|+\frac{\pi}{2}\right)
$$

3. (a) Let $y(t)$ be the amount of Einsteinium-254 left, in milligrams, after t days, so $y=C e^{k t}$. Then we first know that $y(0)=C=3$. Since half the sample is left after 270 days, this implies

$$
y(270)=3 e^{270 k}=1.5 \quad \Longrightarrow \quad k=-\frac{1}{270} \ln (2) \quad \Longrightarrow \quad y=3 e^{-\frac{t}{270} \ln (2)} .
$$

Thus, after 30 days, there will be

$$
y(30)=3 e^{-\frac{30}{270} \ln (2)}=3 e^{-\frac{1}{9} \ln (2)}=\frac{3}{2^{\frac{1}{9}}} \approx 2.78
$$

There will be about 2.78 mg left after 30 days.
(b) We want to know when $y=0.5$ so, from part (a), we set

$$
3 e^{-\frac{t}{270} \ln (2)}=0.5 \quad \Longrightarrow \quad t=\frac{270 \ln (6)}{\ln (2)} \approx 698
$$

So it takes about 698 days for the sample to be reduced to 0.5 mg .
4. Let $y(t)$ be the number of parakeets on the island after t years, so $y=C e^{k t}$. Then we know that

$$
y(2)=C e^{2 k}=50 \quad \text { and } \quad y(5)=C e^{5 k}=150 .
$$

Dividing the second by the first gives

$$
\frac{C e^{5 k}}{C e^{2 k}}=\frac{150}{50} \quad \Longrightarrow \quad e^{3 k}=3 \quad \Longrightarrow \quad k=\frac{1}{3} \ln (3)
$$

Hence using $y(2)=50$ we have

$$
50=C e^{\frac{2}{3} \ln (3)} \quad \Longrightarrow \quad C=50 e^{-\frac{2}{3} \ln (3)} \approx 24 .
$$

So there were about 24 parakeets originally on the island.
5. Let $y(t)$ be the number of healthy individuals after t days, so $y=C e^{k t}$. If there are C people in the city, after 10 days 10% (that is, $\frac{1}{10}$) of them have contracted the flu, so only $\frac{9}{10} C$ people are healthy. Hence

$$
y(10)=C e^{10 k}=\frac{9}{10} C \quad \Longrightarrow \quad e^{10 k}=\frac{9}{10} \quad \Longrightarrow \quad k=\frac{1}{10} \ln \left(\frac{9}{10}\right) .
$$

We want to know when 40% of the population is infected, so 60% or $\frac{3}{5} C$ people remain healthy, implying

$$
y=C e^{\frac{t}{10} \ln \left(\frac{9}{10}\right)}=\frac{3}{5} C \quad \Longrightarrow \quad e^{\frac{t}{10} \ln \left(\frac{9}{10}\right)}=\frac{3}{5} \quad \Longrightarrow \quad t=10 \frac{\ln \left(\frac{3}{5}\right)}{\ln \left(\frac{9}{10}\right)} \approx 48.5
$$

So it will take about 48.5 days for 40% of the people to contract the flu.
6. (a) Newton's Law of Cooling can be represented by the differential equation

$$
\frac{d y}{d t}=k(y-T)
$$

which is separable. It can be rewritten

$$
\begin{aligned}
\frac{1}{y-T} d y & =k d t \\
\int \frac{1}{y-T} d y & =\int k d t \\
\ln (y-T) & =k t+C \\
y-T & =C e^{k t} \\
y & =C e^{k t}+T
\end{aligned}
$$

In this case, $y(0)=C+T$ so $C=T-y(0)=T-y_{0}$. Thus the particular solution is given by

$$
y=\left(T-y_{0}\right) e^{k t}+T
$$

(b) Here $y_{0}=37$ and $T=-8$, so the temperature of the body is given by

$$
y=45 e^{k t}-8
$$

Furthermore,

$$
y(30)=45 e^{30 k}-8=25 \quad \Longrightarrow \quad k=\frac{1}{30} \ln \left(\frac{33}{45}\right) .
$$

Hence

$$
y(45)=45 e^{\frac{45}{30} \ln \left(\frac{33}{45}\right)}-8 \approx 20.3
$$

So the temperature of the body when the medical examiner arrives is about $20.3^{\circ} \mathrm{C}$.

