MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) Note that

$$
\frac{d y}{d t}=1 \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=0
$$

so

$$
t^{2} \frac{d^{2} y}{d t^{2}}+y=t^{2} \cdot 0+t=t
$$

and

$$
t \frac{d y}{d t}=t \cdot 1=t
$$

Since these expressions are equal, the differential equation is satisfied, and hence $y=t$ is a solution of the given equation.
(b) Note that

$$
\frac{d y}{d t}=\frac{1}{t} \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=-\frac{1}{t^{2}},
$$

so

$$
t^{2} \frac{d^{2} y}{d t^{2}}+y=t^{2}\left(-\frac{1}{t^{2}}\right)+\ln (t)=\ln (t)-1
$$

and

$$
t \frac{d y}{d t}=t\left(\frac{1}{t}\right)=1 .
$$

Since these expressions are not equal, the differential equation is not satisfied, and hence $y=\ln (t)$ is not a solution of the given equation.
(c) Note that

$$
\frac{d y}{d t}=\ln (t)+1 \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=\frac{1}{t}
$$

so

$$
t^{2} \frac{d^{2} y}{d t^{2}}+y=t^{2}\left(\frac{1}{t}\right)+t \ln (t)=t+t \ln (t)
$$

and

$$
t \frac{d y}{d t}=t[\ln (t)+1]=t \ln (t)+t
$$

Since these expressions are equal, the differential equation is again satisfied, and hence $y=t \ln (t)$ is also a solution of the given equation.
2. (a) We have

$$
\begin{aligned}
\frac{d y}{d t} & =9-\sqrt{t} \\
y(t) & =\int(9-\sqrt{t}) d t \\
& =9 t-\frac{2}{3} t^{\frac{3}{2}}+C
\end{aligned}
$$

This is the general solution, so to find the particular solution we will use the fact that $y=4$ when $t=0$. Thus

$$
y(0)=0-0+C=C=4 .
$$

The particular solution is therefore

$$
y(t)=9 t-\frac{2}{3} t^{\frac{3}{2}}+4
$$

(b) We have

$$
\begin{aligned}
\cos ^{2}(t) \frac{d y}{d t} & =1-\cos (t) \\
\frac{d y}{d t} & =\sec ^{2}(t)-\sec (t) \\
y(t) & =\int\left[\sec ^{2}(t)-\sec (t)\right] d t \\
& =\tan (t)-\ln |\sec (t)+\tan (t)|+C
\end{aligned}
$$

Since $y(0)=0$, we obtain

$$
y(0)=0-\ln |1+0|+C=C=0,
$$

so the particular solution is

$$
y(t)=\tan (t)-\ln |\sec (t)+\tan (t)| .
$$

(c) We have

$$
\begin{aligned}
& f^{\prime}(t)=\frac{\ln (t)}{t^{2}} \\
& f(t)=\int \frac{\ln (t)}{t^{2}} d t
\end{aligned}
$$

We use integration by parts with $w=\ln (t)$ so $d w=\frac{1}{t} d t$ and $d v=\frac{1}{t^{2}} d t$ so $v=-\frac{1}{t}$. The integral becomes

$$
\begin{aligned}
f(t) & =-\frac{\ln (t)}{t}+\int \frac{1}{t^{2}} d t \\
& =-\frac{\ln (t)}{t}-\frac{1}{t}+C .
\end{aligned}
$$

Since $f(1)=2$, we get

$$
f(1)=-\frac{\ln (1)}{1}-1+C=C-1=2
$$

and so $C=3$. Hence the particular solution is

$$
f(t)=-\frac{\ln (t)}{t}-\frac{1}{t}+3
$$

(d) We rewrite and integrate:

$$
\begin{aligned}
f^{\prime \prime}(t) & =4 t^{-2} \\
\int f^{\prime \prime}(t) d t & =4 \int t^{-2} d t \\
f^{\prime}(t) & =4\left[\frac{1}{-1} t^{-1}\right]+C=-\frac{4}{t}+C .
\end{aligned}
$$

This gives $f^{\prime}(1)=-4+C=0$ and so $C=4$. Now we integrate a second time:

$$
\begin{aligned}
\int f^{\prime}(t) d t & =\int\left(-4 t^{-1}+4\right) d t \\
f(t) & =-4 \ln |t|+4 t+C
\end{aligned}
$$

yielding $f(-1)=-4 \ln |-1|+4(-1)+C=-4+C$. Then we can set $-4+C=3$ to get $C=7$, and the particular solution is

$$
f(t)=-4 \ln |t|+4 t+7
$$

(e) Integrating twice gives

$$
\begin{aligned}
\int f^{\prime \prime}(t) d t & =\int(3 t-3) d t \\
f^{\prime}(t) & =\frac{3}{2} t^{2}-3 t+C \\
\int f^{\prime}(t) d t & =\int\left(\frac{3}{2} t^{2}-3 t+C\right) d t \\
f(t) & =\frac{3}{2}\left[\frac{1}{3} t^{3}\right]-3\left[\frac{1}{2} t^{2}\right]+C t+D=\frac{1}{2} t^{3}-\frac{3}{2} t^{2}+C t+D
\end{aligned}
$$

where both C and D are arbitrary constants. Using the first initial condition, we have that $f(0)=D=-5$. Using the other condition, we get $f(2)=\frac{1}{2}(8)-\frac{3}{2}(4)+C(2)-5=$ $4-6+2 C-5=2 C-7$. Then we set $2 C-7=-7$ to get $C=0$. Hence the particular solution is

$$
f(t)=\frac{1}{2} t^{3}-\frac{3}{2} t^{2}-5
$$

3. Integrating gives

$$
\begin{aligned}
\int f^{\prime}(x) d x & =\int 9 x^{2} d x \\
f(x) & =9\left[\frac{1}{3} x^{3}\right]+C=3 x^{3}+C
\end{aligned}
$$

We want the line $y=36 x$ to be tangent to the graph $y=f(x)$, that is, to $y=3 x^{3}+C$. This means that the two curves must meet at a point where their slopes are equal. But the slope of $y=36 x$ is always $y^{\prime}=36$, so we solve $f^{\prime}(x)=36$, giving

$$
9 x^{2}=36 \quad \Longrightarrow \quad x^{2}=4 \quad \Longrightarrow \quad x= \pm 2
$$

In the first case, from the equation of the line we have $y=36(2)=72$ so then

$$
3(2)^{3}+C=72 \quad \Longrightarrow \quad 24+C=72 \quad \Longrightarrow \quad C=48
$$

In the second case, we have $y=36(-2)=-72$ and thus

$$
3(-2)^{3}+C=-72 \quad \Longrightarrow \quad-24+C=-72 \quad \Longrightarrow \quad C=-48
$$

Hence the two such functions are

$$
f(x)=3 x^{3}+48 \quad \text { and } \quad f(x)=3 x^{3}-48
$$

4. (a) The acceleration function is simply $a(t)=-9.8$, so integrating twice gives us both the velocity and position functions:

$$
\begin{aligned}
\int a(t) d t & =\int(-9.8) d t \\
v(t) & =-9.8 t+C \\
\int v(t) d t & =\int(-9.8 t+C) d t \\
s(t) & =-9.8\left[\frac{1}{2} t^{2}\right]+C t+D=-4.9 t^{2}+C t+D .
\end{aligned}
$$

We are told that the rocket is launched from the ground, which implies that $s(0)=0$, and so $D=0$. Now let the time at which the rocket reaches its maximum height be T; then $v(T)=0$ and we have that $-9.8 T+C=0$ so $T=\frac{C}{9.8}$. We want $s(T)=4410$, so then

$$
\begin{aligned}
s(T) & =-4.9 T^{2}+C T \\
4410 & =-4.9\left(\frac{C}{9.8}\right)^{2}+C\left(\frac{C}{9.8}\right) \\
4410 & =\frac{C^{2}}{19.6} \\
C^{2} & =86436 \\
C & = \pm 294
\end{aligned}
$$

Finally, we have the initial velocity $v(0)=C= \pm 294$. Since the rocket is launched upward, we can accept only the positive answer; hence the initial velocity must be 294 metres per second.
(b) From the above, the rocket reaches its maximum height when $T=\frac{C}{9.8}=\frac{294}{9.8}=30$, that is, after 30 seconds.
(c) The particular solution is $s(t)=-4.9 t^{2}+294 t$, so

$$
s(10)=-4.9(100)+294(10)=2450
$$

The rocket is 2450 metres high after 10 seconds.

