MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 3.1

Math 1001 Worksheet
Winter 2024

SOLUTIONS

1. (a) The partial fraction decomposition is

$$
\frac{3 x-2}{x^{2}-x}=\frac{3 x-2}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1} \quad \Longrightarrow \quad 3 x-2=A(x-1)+B x
$$

When $x=0,-A=-2$ so $A=2$. When $x=1$, we get $B=1$. Thus the integral becomes

$$
\begin{aligned}
\int \frac{3 x-2}{x^{2}-x} d x & =\int\left[\frac{2}{x}+\frac{1}{x-1}\right] d x \\
& =2 \ln |x|+\ln |x-1|+C
\end{aligned}
$$

(b) The partial fraction decomposition is

$$
\frac{2-x}{x^{2}+7 x+10}=\frac{2-x}{(x+5)(x+2)}=\frac{A}{x+5}+\frac{B}{x+2} \quad \Longrightarrow \quad 2-x=A(x+2)+B(x+5)
$$

When $x=-5,-3 A=7$ so $A=-\frac{7}{3}$. When $x=-2,3 B=4$ so $B=\frac{4}{3}$. The integral becomes

$$
\begin{aligned}
\int \frac{2-x}{x^{2}+7 x+10} d x & =\int\left[\frac{-\frac{7}{3}}{x+5}+\frac{\frac{4}{3}}{x+2}\right] d x \\
& =-\frac{7}{3} \ln |x+5|+\frac{4}{3} \ln |x+2|+C
\end{aligned}
$$

(c) The partial fraction decomposition is

$$
\begin{aligned}
& \frac{6 x^{3}+x^{2}+25 x+4}{x^{4}+7 x^{2}+12}=\frac{6 x^{3}+x^{2}+25 x+4}{\left(x^{2}+4\right)\left(x^{2}+3\right)}=\frac{A x+B}{x^{2}+4}+\frac{C x+D}{x^{2}+3} \\
& 6 x^{3}+x^{2}+25 x+4=(A x+B)\left(x^{2}+3\right)+(C x+D)\left(x^{2}+4\right)
\end{aligned}
$$

Unfortunately, there is no simple way to solve for the constants A, B, C and D, so we'll set up a system of four equations in the four unknowns. When $x=0$, we have

$$
3 B+4 D=4
$$

When $x=1$, we have

$$
4 A+4 B+5 C+5 D=36
$$

When $x=-1$, we have

$$
4 B-4 A+5 D-5 C=-26
$$

When $x=2$, we have

$$
14 A+7 B+16 C+8 D=106
$$

Adding the second and third equations gives

$$
8 B+10 D=10 \quad \Longrightarrow \quad 4 B+5 D=5
$$

Since the first equation implies that

$$
D=1-\frac{3}{4} B
$$

we have

$$
4 B+5\left(1-\frac{3}{4} B\right)=5 \quad \Longrightarrow \quad \frac{1}{4} B=0
$$

so $B=0$ and hence $D=1$. Now the last two equations become

$$
-4 A-5 C=-31 \quad \Longrightarrow \quad A=\frac{31}{4}-\frac{5}{4} C
$$

and

$$
14 A+16 C=98 \quad \Longrightarrow \quad 7\left(\frac{31}{4}-\frac{5}{4} C\right)+8 C=49 \quad \Longrightarrow \quad-\frac{3}{4} C=-\frac{21}{4}
$$

so $C=7$ and therefore $A=-1$. The integral becomes

$$
\begin{aligned}
\int \frac{6 x^{3}+x^{2}+25 x+4}{x^{4}+7 x^{2}+12} d x & =\int\left[\frac{-x}{x^{2}+4}+\frac{7 x+1}{x^{2}+3}\right] d x \\
& =\int\left[-\frac{x}{x^{2}+4}+\frac{7 x}{x^{2}+3}+\frac{1}{x^{2}+3}\right] d x \\
& =-\frac{1}{2} \ln \left(x^{2}+4\right)+\frac{7}{2} \ln \left(x^{2}+3\right)+\frac{\sqrt{3}}{3} \arctan \left(\frac{\sqrt{3} x}{3}\right)+C
\end{aligned}
$$

Here, the first two integrals can be evaluated by u-substitution with $u=x^{2}+4$ and $u=x^{2}+3$, respectively.
(d) The partial fraction decomposition is

$$
\begin{aligned}
\frac{-2 x^{3}+12 x^{2}+162 x}{x^{4}-81}= & \frac{-2 x^{3}+12 x^{2}+162 x}{(x+3)(x-3)\left(x^{2}+9\right)}=\frac{A}{x-3}+\frac{B}{x+3}+\frac{C x+D}{x^{2}+9} \\
-2 x^{3}+12 x^{2}+162 x= & A(x+3)\left(x^{2}+9\right)+B(x-3)\left(x^{2}+9\right) \\
& +(C x+D)(x+3)(x-3)
\end{aligned}
$$

When $x=3,108 A=540$ so $A=5$. When $x=-3,-108 B=-324$ so $B=3$. When $x=0,27 A-27 B-9 D=54-9 D=0$ so $D=6$. And when $x=1,40 A-20 B-8 C-8 D=$ $92-8 C=172$ so $C=-10$. The integral becomes

$$
\begin{aligned}
\int \frac{-2 x^{3}+12 x^{2}+162 x}{x^{4}-81} d x & =\int\left[\frac{5}{x-3}+\frac{3}{x+3}+\frac{-10 x+6}{x^{2}+9}\right] d x \\
& =\int\left[\frac{5}{x-3}+\frac{3}{x+3}-\frac{10 x}{x^{2}+9}+\frac{6}{x^{2}+9}\right] d x \\
& =5 \ln |x-3|+3 \ln |x+3|-5 \ln \left(x^{2}+9\right)+2 \arctan \left(\frac{x}{3}\right)+C .
\end{aligned}
$$

Here, the third integral can be evaluated by u-substitution with $u=x^{2}+9$.
2. (a) We have

$$
\begin{aligned}
\frac{7+5 x-2 x^{2}}{(x-3)^{3}} & =\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{(x-3)^{3}} \\
7+5 x-2 x^{2} & =A(x-3)^{2}+B(x-3)+C \\
& =A x^{2}-6 A x+9 A+B x-3 B+C \\
& =(9 A-3 B+C)+(B-6 A) x+A x^{2} .
\end{aligned}
$$

(b) Comparing the coefficients of x^{2}, we immediately have $A=-2$. Comparing the coefficients of x, we have $B-6 A=B+12=5$ so $B=-7$. Finally, comparing the constant coefficients, we have $9 A-3 B+C=3+C=7$ so $C=4$.
(c) By the method of partial fractions, we can write

$$
\begin{aligned}
\int \frac{7+5 x-2 x^{2}}{(x-3)^{3}} d x & =\int\left[\frac{-2}{x-3}+\frac{-7}{(x-3)^{2}}+\frac{4}{(x-3)^{3}}\right] d x \\
& =-2 \ln |x-3|+\frac{7}{x-3}-\frac{2}{(x-3)^{2}}+C
\end{aligned}
$$

