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SOLUTIONS

[7] 1. (a) We use a regular partition with subintervals of width
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3] (b) We have

[5] 2. (a) The integrand is an improper rational function, so we can use long division, or take
advantage of the similarity between the numerator and the denominator to write
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5] (b) Let u = 2? + 9 so du = 2z dx and §du:xdm. When z = 0, u = 0°+9 = 9. When

r =4, u=4%+9 = 25. Thus the integral becomes
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[5] (c) Using the Additive Interval Property, we have
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[5] 3. We can write

2

0 T T T
g(x) = / t* cos(t*) dt —i—/ t* cos(t*) dt = —/ t* cos(tt) dt —i—/ t cos(t) dt.
2 0 0 0
Then, by the First Fundamental Theorem of Calculus and the Chain Rule, we have
g'(x) = —(2*)* cos((¢?)") - [2°] + 2* cos(a”)
= —z* cos(2%) - 2z + 2% cos(2?)
2

= 2” cos(x?) — 22° cos(z®).

[10] 4. (a) The sketch of R is given in Figure 1. Note that y = 2 — 1z and y = v/z — 1 intersect
when
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(x—10)(x —2)=0

and so x = 10 or x = 2. However, substituting these values back into the original
equation confirms that x = 10 is not a solution of the equation. Hence only the point
(2,1) is an intersection point.



(b)

Figure 1: Question 4(a)

From the graph, we can see that the region is always bounded below by the z-axis (that
is, the line y = 0). On the interval [1, 2] the top boundary curve is y = v/ — 1. On the
interval [2, 4] the top boundary curve is y = 2 — %x Thus
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The function y = v/x — 1 can be written z = y* + 1 (with y > 0), while y = 2 — %x
becomes x = 4 — 2y. The graph shows that x = 4 — 2y is always the rightmost boundary
curve, while x = y? + 1 is always the leftmost boundary curve. So then
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