MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 2

MATHEMATICS 1001-004

Winter 2024

SOLUTIONS

[7] 1. (a) We use a regular partition with subintervals of width

$$\Delta x = \frac{1 - (-1)}{n} = \frac{2}{n}.$$

We choose the sample point

$$x_i = -1 + i\Delta x = \frac{2i}{n} - 1.$$

Thus

$$f(x_i) = 6\left(\frac{2i}{n} - 1\right)^2 - \left(\frac{2i}{n} - 1\right) + 2$$
$$= 6\left(\frac{4i^2}{n^2} - \frac{4i}{n} + 1\right) - \frac{2i}{n} + 1 + 2$$
$$= \frac{24i^2}{n^2} - \frac{26i}{n} + 9.$$

Now we can write

$$\int_{-1}^{1} (6x^{2} - x + 2) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{24i^{2}}{n^{2}} - \frac{26i}{n} + 9 \right) \cdot \frac{2}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{48i^{2}}{n^{3}} - \frac{52i}{n^{2}} + \frac{18}{n} \right]$$

$$= \lim_{n \to \infty} \left[\frac{48}{n^{3}} \sum_{i=1}^{n} i^{2} - \frac{52}{n^{2}} \sum_{i=1}^{n} i + \frac{18}{n} \sum_{i=1}^{n} 1 \right]$$

$$= \lim_{n \to \infty} \left[\frac{48}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{52}{n^{2}} \cdot \frac{n(n+1)}{2} + \frac{18}{n} \cdot n \right]$$

$$= 16 - 26 + 18$$

[3] (b) We have

$$\int_{-1}^{1} (6x^2 - x + 2) dx = \left[6 \cdot \frac{x^3}{3} - \frac{x^2}{2} + 2x \right]_{-1}^{1}$$

$$= \left[2x^3 - \frac{1}{2}x^2 + 2x \right]_{-1}^{1}$$

$$= \left[2 - \frac{1}{2} + 2 \right] - \left[-2 - \frac{1}{2} - 2 \right]$$

$$= 8.$$

[5] 2. (a) The integrand is an improper rational function, so we can use long division, or take advantage of the similarity between the numerator and the denominator to write

$$\int_0^3 \frac{x^2 + 4}{x^2 + 9} dx = \int_0^3 \frac{x^2 + 9 - 5}{x^2 + 9} dx$$

$$= \int_0^3 \left(1 - \frac{5}{x^2 + 9} \right) dx$$

$$= \left[x - 5 \cdot \frac{1}{3} \arctan\left(\frac{x}{3}\right) \right]_0^3$$

$$= \left[3 - \frac{5}{3} \arctan(1) \right] - \left[0 - \frac{5}{3} \arctan(0) \right]$$

$$= 3 - \frac{5}{3} \cdot \frac{\pi}{4} + \frac{5}{3} \cdot 0$$

$$= 3 - \frac{5\pi}{12}.$$

[5] (b) Let $u = x^2 + 9$ so du = 2x dx and $\frac{1}{2} du = x dx$. When x = 0, $u = 0^2 + 9 = 9$. When x = 4, $u = 4^2 + 9 = 25$. Thus the integral becomes

$$\int_0^4 \frac{3x}{\sqrt{x^2 + 9}} dx = \frac{3}{2} \int_9^{25} u^{-\frac{1}{2}} du$$

$$= \frac{3}{2} \left[2\sqrt{u} \right]_9^{25}$$

$$= \frac{3}{2} \left[2\sqrt{25} - 2\sqrt{9} \right]$$

$$= 6.$$

[5] (c) Using the Additive Interval Property, we have

$$\int_{-\frac{1}{2}}^{2} f(x) dx = \int_{-\frac{1}{2}}^{0} f(x) dx + \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx$$

$$= \int_{-\frac{1}{2}}^{0} e^{2x} dx + \int_{0}^{1} \cos(\pi x) dx + \int_{1}^{2} \left(-\frac{1}{x^{2}}\right) dx$$

$$= \left[\frac{e^{2x}}{2}\right]_{-\frac{1}{2}}^{0} + \left[\frac{\sin(\pi x)}{\pi}\right]_{0}^{1} + \left[\frac{1}{x}\right]_{1}^{2}$$

$$= \left[\frac{e^{0}}{2} - \frac{e^{-2}}{2}\right] + \left[\frac{\sin(\pi)}{\pi} - \frac{\sin(0)}{\pi}\right] + \left[\frac{1}{2} - 1\right]$$

$$= \frac{1}{2} - \frac{1}{2e} + 0 - 0 + \frac{1}{2} - 1$$

$$= -\frac{1}{2e}.$$

[5] 3. We can write

$$g(x) = \int_{x^2}^{0} t^2 \cos(t^4) dt + \int_{0}^{x} t^2 \cos(t^4) dt = -\int_{0}^{x^2} t^2 \cos(t^4) dt + \int_{0}^{x} t^2 \cos(t^4) dt.$$

Then, by the First Fundamental Theorem of Calculus and the Chain Rule, we have

$$g'(x) = -(x^2)^2 \cos((x^2)^4) \cdot [x^2]' + x^2 \cos(x^4)$$
$$= -x^4 \cos(x^8) \cdot 2x + x^2 \cos(x^4)$$
$$= x^2 \cos(x^4) - 2x^5 \cos(x^8).$$

[10] 4. (a) The sketch of R is given in Figure 1. Note that $y = 2 - \frac{1}{2}x$ and $y = \sqrt{x-1}$ intersect when

$$2 - \frac{1}{2}x = \sqrt{x - 1}$$
$$\left(2 - \frac{1}{2}x\right)^2 = x - 1$$
$$4 - 2x + \frac{1}{4}x^2 = x - 1$$
$$x^2 - 12x + 20 = 0$$
$$(x - 10)(x - 2) = 0$$

and so x = 10 or x = 2. However, substituting these values back into the original equation confirms that x = 10 is not a solution of the equation. Hence only the point (2,1) is an intersection point.

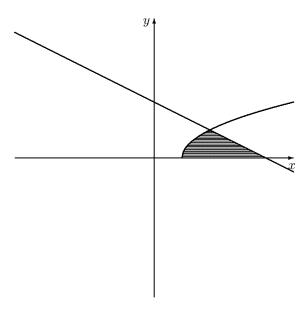


Figure 1: Question 4(a)

(b) From the graph, we can see that the region is always bounded below by the x-axis (that is, the line y=0). On the interval [1,2] the top boundary curve is $y=\sqrt{x-1}$. On the interval [2,4] the top boundary curve is $y=2-\frac{1}{2}x$. Thus

$$A = \int_{1}^{2} \left[\sqrt{x - 1} - 0 \right] dx + \int_{2}^{4} \left[\left(2 - \frac{1}{2} x \right) - 0 \right] dx$$
$$= \int_{1}^{2} \sqrt{x - 1} dx + \int_{2}^{4} \left(2 - \frac{1}{2} x \right) dx.$$

(c) The function $y = \sqrt{x-1}$ can be written $x = y^2 + 1$ (with $y \ge 0$), while $y = 2 - \frac{1}{2}x$ becomes x = 4 - 2y. The graph shows that x = 4 - 2y is always the rightmost boundary curve, while $x = y^2 + 1$ is always the leftmost boundary curve. So then

$$A = \int_0^1 [(4 - 2y) - (y^2 + 1)] dy$$
$$= \int_0^1 (3 - 2y - y^2) dy.$$