MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{\left(x_{i}^{*}-4\right)^{2}} \Delta x_{i}=\int_{6}^{8} \frac{2}{(x-4)^{2}} d x$
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos ^{3}\left(5 x_{i}^{*}\right) \Delta x_{i}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{3}(5 x) d x$
2. (a) Using a regular partition and setting the sample point $x_{i}^{*}=x_{i}$, we can write

$$
\int_{0}^{2} \frac{x^{3}}{4} d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Let

$$
\Delta x=\frac{2-0}{n}=\frac{2}{n} \quad \text { and } \quad x_{i}^{*}=0+\frac{2 i}{n}=\frac{2 i}{n}
$$

so

$$
f\left(x_{i}^{*}\right)=\frac{x_{i}^{3}}{4}=\frac{1}{4}\left(\frac{2 i}{n}\right)^{3}=\frac{2 i^{3}}{n^{3}} .
$$

Then

$$
\begin{aligned}
\int_{0}^{2} \frac{x^{3}}{4} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i^{3}}{n^{3}} \cdot \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n^{4}} \cdot \frac{n^{2}(n+1)^{2}}{4} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}} \\
& =1
\end{aligned}
$$

Since $f(x)$ is continuous and non-negative on $[0,2]$ the definite integral represents the area under the curve.
(b) Using a regular partition and setting the sample point $x_{i}^{*}=x_{i}$, we can observe that

$$
\int_{2}^{3}(2-7 x) d x=\lim _{n \rightarrow \infty} f\left(x_{i}^{*}\right) \Delta x
$$

where

$$
\Delta x=\frac{3-2}{n}=\frac{1}{n} \quad \text { and } \quad x_{i}^{*}=2+\frac{i}{n} .
$$

Now we have

$$
f\left(x_{i}^{*}\right)=2-7\left(2+\frac{i}{n}\right)=-\frac{7 i}{n}-12
$$

and so

$$
\begin{aligned}
\int_{2}^{3}(2-7 x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(-\frac{7 i}{n}-12\right) \cdot \frac{1}{n} \\
& =\lim _{n \rightarrow \infty}\left(-\frac{7}{n^{2}} \sum_{i=1}^{n} i-\frac{12}{n} \sum_{i=1}^{n} 1\right) \\
& =\lim _{n \rightarrow \infty}\left(-\frac{7}{n^{2}} \cdot \frac{n(n+1)}{2}-\frac{12}{n} \cdot n\right) \\
& =\lim _{n \rightarrow \infty}\left(-\frac{7(n+1)}{2 n}-12\right) \\
& =-\frac{7}{2}-12 \\
& =-\frac{31}{2}
\end{aligned}
$$

However, note that $2-7 x<0$ whenever $x>\frac{2}{7}$, and therefore on $[2,3]$. This means that the definite integral does not represent the area under the curve. Indeed, it would make no sense to assign a negative value to an area.

