MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4

MATHEMATICS 1001

WINTER 2024

Due: Monday, February 26th, 2024 at 11:59pm. See the Gradescope Handout for submission information.

Note: You should complete Worksheet 2.1 and Worksheet 2.2 before you work on this assignment.

- 1. Use the limit of a Riemann sum to determine the area A of each of the following regions. (In each case, use a regular partition and let the sample point $x_i^* = x_i$, that is, the right endpoint of the *i*th subinterval.)
 - (a) The region under the curve $f(x) = x^2 3x + 6$ on the interval [-2, 4].
 - (b) The region under the curve $f(x) = x^2(x+2)$ on the interval $[0, \frac{1}{3}]$.
- 2. Consider the region R which lies under the curve $f(x) = \sqrt{x}$ on the interval [0, 16]. Use the Riemann sum definition of the definite integral to find the area A of R. Instead of a regular partition, let the right endpoint of the *i*th subinterval is $x_i = \frac{16i^2}{n^2}$, and use it as the sample point x_i^* .
- 3. Evaluate $\int_{-2}^{1} (x-1)^2 dx$ by computing the limit of a Riemann sum.