MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6

MATHEMATICS 1001

Winter 2025

SOLUTIONS

[2] 1. (a) See Figure 1.

Figure 1: Question 1

[4] (b) First we need to find the points of intersection. We set

$$x - 1 = 3\sqrt{x - 1}$$
$$(x - 1)^2 = 9(x - 1)$$
$$x^2 - 11x + 10 = 0$$
$$(x - 10)(x - 1) = 0,$$

so x = 10 or x = 1. From the graph, the top boundary curve is clearly $y = 3\sqrt{x-1}$ and the bottom boundary curve is y = x - 1. Thus

$$A = \int_{1}^{10} [3\sqrt{x-1} - (x-1)] dx$$
$$= \int_{1}^{10} [3\sqrt{x-1} - x + 1] dx$$
$$= \left[2(x-1)^{\frac{3}{2}} - \frac{1}{2}x + x \right]_{1}^{10}$$
$$= \frac{27}{2}.$$

[4] (c) As functions of y, the line y = x - 1 becomes x = y + 1, while the semi-parabola $y = 3\sqrt{x - 1}$ becomes

$$y^2 = 9(x-1)$$
 \implies $x = \frac{1}{9}y^2 + 1.$

For the points of intersection, we could make use of the information we found in part (b). Substituting x = 1 into either curve, we get y = 0. Substituting x = 10, we get y = 9. Alternatively, we could solve the equation

$$\frac{1}{9}y^2 + 1 = y + 1$$
$$\frac{1}{9}y^2 - y = 0$$
$$\frac{1}{9}y(y - 9) = 0,$$

so again y = 0 or y = 9. Finally, we note from the graph that x = y + 1 is the right boundary curve, while $x = \frac{1}{9}y^2 + 1$ is the left boundary curve. Hence

$$A = \int_0^9 \left[(y+1) - \left(\frac{1}{9} y^2 + 1 \right) \right] dy$$

$$= \int_0^9 \left[y - \frac{1}{9} y^2 \right] dy$$

$$= \left[\frac{1}{2} y^2 - \frac{1}{27} y^3 \right]_0^9$$

$$= \frac{27}{2}.$$

[5] 2. (a) This region is depicted in Figure 2. First we need to find the points of intersection of the two curves. We set

$$2x^{2} - 4x - 6 = x^{2} - x - 2$$
$$x^{2} - 3x - 4 = 0$$
$$(x+1)(x-4) = 0,$$

so x = -1 or x = 4. At x = 0, $x^2 - x - 2 = -2$ while $2x^2 - 4x - 6 = -6$, so

$$x^{2} - x - 2 \ge 2x^{2} - 4x - 6$$
 on $[-1, 4]$. Now we have

$$A = \int_{-1}^{4} [(x^2 - x - 2) - (2x^2 - 4x - 6)] dx$$

$$= \int_{-1}^{4} [-x^2 + 3x + 4] dx$$

$$= \left[-\frac{1}{3}x^3 + \frac{3}{2}x^2 + 4x \right]_{-1}^{4}$$

$$= \frac{125}{6}.$$

Figure 2: Question 2(a)

Figure 3: Question 2(b)

[5] (b) As suggested by Figure 3, this region is horizontally (but not vertically) sumple, so we have two options.

We could split the region into two vertically simple sub-regions. The first sub-region begins where the lines y=-x and y=1 intersect; by setting -x=1, we see that this is x=-1. It ends where y=-x intersects $y=\sqrt{x}$. If $-x=\sqrt{x}$ then $x^2=x$ so $x^2-x=x(x-1)=0$. This appears to give two intersection points: x=0 and x=1. However, substitution back into $-x=\sqrt{x}$ shows that only x=0 is a valid solution. The second sub-region must therefore start at x=0 and end at the point where $y=\sqrt{x}$ intersects with y=1; if $\sqrt{x}=1$ then $x=1^2=1$.

Thus we can first consider the sub-region on the interval [-1,0]. Here the top boundary curve is y=1 and the bottom boundary curve is y=-x. Hence its area is

$$A_1 = \int_{-1}^{0} [1 - (-x)] dx = \int_{-1}^{0} (x+1) dx = \left[\frac{x^2}{2} + x \right]_{-1}^{0} = \frac{1}{2}.$$

Next we can consider the sub-region on the interval [0, 1]. Its top boundary curve is still y = 1 but now its bottom boundary curve is $y = \sqrt{x}$. This means that its area is

$$A_2 = \int_0^1 \left[1 - \sqrt{x}\right] dx = \left[x - \frac{2}{3}x^{\frac{3}{2}}\right]_0^1 = \frac{1}{3}.$$

Finally, then, the total area of the region is

$$A = A_1 + A_2 = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
.

Because the region is horizontally simple, however, it is more straightforward to work in terms of y. The function $y = \sqrt{x}$ can be written as $x = y^2$, and the function y = -x becomes x = -y. These two curves intersect when

$$y^{2} = -y$$
$$y^{2} + y = 0$$
$$y(y+1) = 0.$$

This appears to suggest two intersection points y=0 and y=-1, but note that the original function $y=\sqrt{x}$ does not permit y<0. Thus only y=0 is actually an intersection point. On the y-interval [0,1], y^2 lies to the right of -y. Hence

$$A = \int_0^1 [y^2 - (-y)] \, dy$$
$$= \int_0^1 [y^2 + y] \, dy$$
$$= \left[\frac{1}{3} y^3 + \frac{1}{2} y^2 \right]_0^1$$
$$= \frac{5}{6}.$$