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SOLUTIONS

1. (a) From the nth term, we see that this sum can be written

2+4+8+16+ +2”_
510 15 20 bn & 5i
(b) The form of the ith term is clearly indicated by the last term in the sum, so we have

y2+8y2+27y2+64y2+---+n3y2 :Zi?,yz

2. (a) i(4i+3):4ii+3i1:4(@)+3n=2n2+5n
(b) Zz — 61) Zz —GZZ— 1) _G(n(n;—l))

3

(c) (3i +1)* = zn:(9i2+6i+ 1) = 92n:¢2 +6Zn:i+zn:1
i=1 i=1 i=1 i=1

i=1 =
1)(2n + 1 1
:9<n(7“L >6( ne >)+6(—n<n2+ >)+ = 3n® +1?5n2+%n

3. The graph of R can be found in Figure 1.

(a) For a regular partition of [—1, 1] into n subintervals,

Ar=mDI_2
n n

(b) First we have

2i
n
Next observe that f(x) is decreasing on the interval [—1, 1], so for any partition, m; = z;
(the right endpoint) and M; = x;_; (the left endpoint). Thus

2 2(0— 1
mi=—1+—l and M, =—-1+ (i )
n



Figure 1: The region under the curve f(x) = 2 — z on the interval [—1, 1], as considered in
Question 3.

(c) We have
f(mi)Zf(—lJr%) :2—<—1+%> _3_Z%

n

f(Mi)=f(—1+2(i_1)):2—(—1+2(i_1)> _g_ 22

and

n n



(d) The lower sum is

6 4 nn+l)
n n? 2
:6_2(n—|—1)
n
2
—4_ 2
n

The upper sum is

6 4 nn+1) 4
n n? 2 n?
_s 2n+1) 4
B n n
2
—44 2
n
(e) We have
2 18
F)=4— 2 =2 =36
s(5) =
and 99
S(5)=d+= =" =44
(B)=d+:=+
(f) We have
2 999
5(500) o= oo = 396
and 2 1001
S(500) = 4+ — = —— = 4.004.
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(g) We have
2
lim s(n) = lim (4——):4—0:4
n—00 n—00 n
and 5
lim S(n) = lim (4—1——) =44+0=4.
n—00 n—00 n
Hence A =4.

. We will use a regular partition where

3—(—1 4
Apo =D 4
n n
and choose as our sample point
A
T, =x; =—1 —Z
n
Thus )
4i 4 16 , 20
fad) :3+3(—1+—Z> = (—1+—Z) — 2o
n n n n

The area A of the region is given by
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