MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Area Under a Curve
Math 1001 Worksheet
FALL 2019

For practice only. Not to be submitted.

1. Write each of the following sums using sigma notation (with $i=1$ as the lower bound of summation).
(a) $\frac{2}{5}+\frac{4}{10}+\frac{8}{15}+\frac{16}{20}+\cdots+\frac{2^{n}}{5 i}$
(b) $y^{2}+8 y^{2}+27 y^{2}+64 y^{2}+\cdots+n^{3} y^{2}$
2. Use the summation formulas to evaluate each of the following sums.
(a) $\sum_{i=1}^{n}(4 i+3)$
(b) $\sum_{i=1}^{n}\left(i^{3}-6 i\right)$
(c) $\sum_{i=1}^{n}(i+4)^{2}$
3. Consider the region R which lies between the graph of $f(x)=2-x$ and the x-axis, on the interval $[-1,1]$.
(a) Determine the width Δx of each subinterval in a regular partition of $[-1,1]$.
(b) Give an expression for the right endpoint x_{i} of the i th subinterval. Use this to find formulas for the point m_{i} and M_{i} at which $f(x)$ attains its minimum and maximum values on the i th subinterval.
(c) Determine $f\left(m_{i}\right)$ and $f\left(M_{i}\right)$.
(d) Find formulas for the lower sum $s(n)$ and the upper sum $S(n)$.
(e) Estimate the area A of the region R by finding the lower and upper sums with $n=5$ subintervals. Give your answers to one decimal place.
(f) Estimate the area A of the region R by finding the lower and upper sums with $n=500$ subintervals. Give your answers to two decimal places.
(g) Find the true value of A by taking the limit of the formulas you derived in part (d) as $n \rightarrow \infty$, and showing that these limits are equal.
4. Use the limit of a Riemann sum to determine the area A of the region which lies below the curve $f(x)=3+3 x-x^{2}$, above the x-axis, to the left of $x=-1$ and to the right of $x=3$.
