Name
 MUN Number

[7] 1. (a) Use the definition of the definite integral as a limit of a sum to evaluate

$$
\int_{-1}^{2}\left(7+4 x-3 x^{2}\right) d x
$$

[3] (b) Check your answer to part (a) using the Fundamental Theorem of Calculus.
[16] 2. Evaluate each of the following definite integrals.
(a) $\int_{\frac{1}{4}}^{\frac{\sqrt{3}}{4}} \frac{1}{\sqrt{1-4 x^{2}}} d x$
(b) $\int_{\frac{1}{4}}^{\frac{\sqrt{3}}{4}} \frac{x}{\sqrt{1-4 x^{2}}} d x$
(c) $\int_{-2}^{6} f(x) d x$ where $f(x)=\left\{\begin{array}{cl}2 x^{3}, & \text { for } x \leq-4 \\ x+5, & \text { for }-4<x<1 \\ 3 x^{-2}, & \text { for } x \geq 1\end{array}\right.$
[5] 3. Consider the function

$$
g(x)=\int_{x}^{x^{4}} \tan (\sqrt{t}) d t
$$

Determine $g^{\prime}(x)$.
[9] 4. Consider the region R bounded by the curves $y=12-x, y=\sqrt{x}$ and $y=2$.
(a) Sketch the graph of the region R on the axes provided.

(b) Set up, but DO NOT EVALUATE, an integral (or a sum of integrals) with respect to x which represents the area of R.
(c) Set up, but DO NOT EVALUATE, an integral (or a sum of integrals) with respect to y which represents the area of R.

