MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) We rewrite and integrate to obtain the general solution:

$$
\begin{aligned}
f^{\prime}(x) & =\cos (2 x-1)+2 \\
\int f^{\prime}(x) d x & =\int[\cos (2 x-1)+2] d x \\
f(x) & =\frac{1}{2} \sin (2 x-1)+2 x+C .
\end{aligned}
$$

To find the particular solution, we first observe that

$$
f\left(\frac{1}{2}\right)=\frac{1}{2} \sin \left(2\left(\frac{1}{2}\right)-1\right)+2\left(\frac{1}{2}\right)+C=\frac{1}{2} \sin (0)+1+C=1+C .
$$

But we are given that $f\left(\frac{1}{2}\right)=3$, so we must have $1+C=3$ and hence $C=2$. Thus the particular solution is

$$
f(x)=\frac{1}{2} \sin (2 x-1)+2 x+2 .
$$

[6] (b) Again, we rewrite and integrate:

$$
\begin{aligned}
f^{\prime \prime}(x) & =4 x^{-2} \\
\int f^{\prime \prime}(x) d x & =4 \int x^{-2} d x \\
f^{\prime}(x) & =4\left[\frac{1}{-1} x^{-1}\right]+C=-\frac{4}{x}+C
\end{aligned}
$$

This gives $f^{\prime}(1)=-4+C=0$ and so $C=4$. Now we integrate a second time:

$$
\begin{aligned}
\int f^{\prime}(x) d x & =\int\left(-4 x^{-1}+4\right) d x \\
f(x) & =-4 \ln |x|+4 x+C
\end{aligned}
$$

yielding $f(-1)=-4 \ln |-1|+4(-1)+C=-4+C$. Then we can set $-4+C=3$ to get $C=7$, and the particular solution is

$$
f(x)=-4 \ln |x|+4 x+7
$$

(c) Integrating twice gives

$$
\begin{aligned}
\int f^{\prime \prime}(x) d x & =\int(3 x-3) d x \\
f^{\prime}(x) & =\frac{3}{2} x^{2}-3 x+C \\
\int f^{\prime}(x) d x & =\int\left(\frac{3}{2} x^{2}-3 x+C\right) d x \\
f(x) & =\frac{3}{2}\left[\frac{1}{3} x^{3}\right]-3\left[\frac{1}{2} x^{2}\right]+C x+D=\frac{1}{2} x^{3}-\frac{3}{2} x^{2}+C x+D
\end{aligned}
$$

where both C and D are arbitrary constants. Using the first initial condition, we have that $f(0)=D=-5$. Using the other condition, we get $f(2)=\frac{1}{2}(8)-\frac{3}{2}(4)+C(2)-5=$ $4-6+2 C-5=2 C-7$. Then we set $2 C-7=-7$ to get $C=0$. Hence the particular solution is

$$
\frac{1}{2} x^{3}-\frac{3}{2} x^{2}-5
$$

2. Integrating gives

$$
\begin{aligned}
\int f^{\prime}(x) d x & =\int 9 x^{2} d x \\
f(x) & =9\left[\frac{1}{3} x^{3}\right]+C=3 x^{3}+C
\end{aligned}
$$

We want the line $y=36 x$ to be tangent to the graph $y=f(x)$, that is, to $y=3 x^{3}+C$. This means that the two curves must meet at a point where their slopes are equal. But the slope of $y=36 x$ is always $y^{\prime}=36$, so we solve $f^{\prime}(x)=36$, giving

$$
9 x^{2}=36 \quad \Longrightarrow \quad x^{2}=4 \quad \Longrightarrow \quad x= \pm 2 .
$$

In the first case, from the equation of the line we have $y=36(2)=72$ so then

$$
3(2)^{3}+C=72 \quad \Longrightarrow \quad 24+C=72 \quad \Longrightarrow \quad C=48
$$

In the second case, we have $y=36(-2)=-72$ and thus

$$
3(-2)^{3}+C=-72 \quad \Longrightarrow \quad-24+C=-72 \quad \Longrightarrow \quad C=-48
$$

Hence the two such functions are

$$
f(x)=3 x^{3}+48 \quad \text { and } \quad f(x)=3 x^{3}-48 .
$$

3. (a) The acceleration function is simply $a(t)=-9.8$, so integrating twice gives us both the
velocity and position functions:

$$
\begin{aligned}
\int a(t) d t & =\int(-9.8) d t \\
v(t) & =-9.8 t+C \\
\int v(t) d t & =\int(-9.8 t+C) d t \\
s(t) & =-9.8\left[\frac{1}{2} t^{2}\right]+C t+D=-4.9 t^{2}+C t+D
\end{aligned}
$$

We are told that the rocket is launched from the ground, which implies that $s(0)=0$, and so $D=0$. Now let the time at which the rocket reaches its maximum height be T; then $v(T)=0$ and we have that $-9.8 T+C=0$ so $T=\frac{C}{9.8}$. We want $s(T)=4410$, so then

$$
\begin{aligned}
s(T) & =-4.9 T^{2}+C T \\
4410 & =-4.9\left(\frac{C}{9.8}\right)^{2}+C\left(\frac{C}{9.8}\right) \\
4410 & =\frac{C^{2}}{19.6} \\
C^{2} & =86436 \\
C & = \pm 294
\end{aligned}
$$

Finally, we have the initial velocity $v(0)=C= \pm 294$. Since the rocket is launched upward, we can accept only the positive answer; hence the initial velocity must be 294 metres per second.
(b) From the above, the rocket reaches its maximum height when $T=\frac{C}{9.8}=\frac{294}{9.8}=30$, that is, after 30 seconds.
(c) The particular solution is $s(t)=-4.9 t^{2}+294 t$, so

$$
s(10)=-4.9(100)+294(10)=2450 .
$$

The rocket is 2450 metres high after 10 seconds.

