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SOLUTIONS

1. (a) lim
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2. (a) Using a regular partition and setting the sample point x∗
i = xi, we can write∫ 2
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x3

4
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n→∞
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Let
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Then ∫ 2
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Since f(x) is continuous and non-negative on [0, 2] the definite integral represents the
area under the curve.

(b) Using a regular partition and setting the sample point x∗
i = xi, we can observe that∫ 3
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where

∆x =
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Now we have
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and so ∫ 3
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However, note that 2 − 7x < 0 whenever x > 2
7
, and therefore on [2, 3]. This means

that the definite integral does not represent the area under the curve. Indeed, it would
make no sense to assign a negative value to an area.


