MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4
MATHEMATICS 1001
FALL 2019

Due: Friday, October 18th, 2019 at 4:00pm. SHOW ALL WORK.

Note: You are encouraged to complete the "Worksheet on Area Under a Curve" before you work on this assignment.

1. Write out the first five terms of each sum. Find each sum (as a polynomial function of n) using the summation formulas.
(a) $\sum_{i=1}^{n} i(i+1)$
(b) $\sum_{i=1}^{n}\left(i^{3}-8 i+3\right)$
2. Consider the region R which lies under the graph of $f(x)=4 x-x^{2}$ and between the lines $x=2$ and $x=4$.
(a) Determine the width Δx of each subinterval in a regular partition of [2, 4].
(b) Give an expression for the endpoint x_{i}^{*} of the i th subinterval. Use this to find formulas for the points m_{i} and M_{i} at which $f(x)$ attains its minimum and maximum values on the i th subinterval. (You may find it helpful to sketch the graph of $y=f(x)$.)
(c) Determine $f\left(m_{i}\right)$ and $f\left(M_{i}\right)$.
(d) Find formulas for the lower sum $s(n)$ and the upper sum $S(n)$.
(e) Estimate the area A of the region R by finding the lower and upper sums with $n=5$ subintervals. Give your answers to two decimal places.
(f) Estimate A by finding the lower and upper sums with $n=500$ subintervals. Give your answers to two decimal places.
(g) Find the true value of A by taking the limit of the formulas you derived in part (d) as $n \rightarrow \infty$, and showing that these limits are equal.
3. Use the limit of a Riemann sum to determine the area A of each of the following regions. (In each case, use a regular partition and let the sample point $x_{i}^{*}=x_{i}$, that is, the right endpoint of the i th subinterval.)
(a) The region under the curve $f(x)=x^{3}+5$ on the interval $[-1,2]$.
(b) The region under the curve $f(x)=(3 x-1)^{2}$ on the interval $[0,5]$.
4. Consider the region R which lies under the curve $f(x)=x^{2}$ and between the y-axis and the line $x=b$. Use the limit of a Riemann sum to show that the area of R is given by $A=\frac{b^{3}}{3}$ for any $b>0$.
