Please remember that each final exam is different, and the style and emphasis of the questions will vary from semester to semester.
[7] 1. Use the definition of the definite integral as a limit of a sum to evaluate $\int_{-1}^{\frac{1}{2}}\left(9-4 x^{2}\right) d x$.
2. Find each of the following integrals:
[5]
(a) $\int_{1}^{4} \frac{1}{\sqrt{x}(1+3 \sqrt{x})^{2}} d x$
(b) $\int \frac{20 e^{2 x}}{25+16 e^{4 x}} d x$
[5]
(c) $\int \frac{6 x^{5}}{x^{3}+4} d x$
(d) $\int e^{7 x} \sin (x) d x$
3. Find each of the following integrals:
(a) $\int \frac{\sin ^{5}\left(\frac{x}{3}\right)}{\sqrt{\cos \left(\frac{x}{3}\right)}} d x$
(b) $\int \frac{\sqrt{x^{2}-9}}{x^{3}} d x$
[10] 4. Sketch the region bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{1}{2} x$. Express each of the following as a single integral, but do not evaluate the integral:
(a) the area of the region, as an integral with respect to x
(b) the area of the region, as an integral with respect to y
(c) the volume of the solid generated by revolving this region about the x-axis
[5] 5. Find and simplify the derivative of $f(x)=\int_{\sqrt{x}}^{3} \frac{6 t^{5}}{\sqrt{4 t^{4}-9}} d t$.
[5] 6. (a) Solve the initial value problem

$$
t y \frac{d y}{d t}-t^{3}+1=0, \quad y(1)=4
$$

[5] (b) The number of bacteria in a culture increases at a rate proportional to the number of bacteria present. If the number of bacteria in an initial culture reached 10 million after 2 weeks, and reached 40 million after 6 weeks, determine the number of bacteria in the initial culture.
[6] (c) Consider the function

$$
f(x)=\left\{\begin{array}{cl}
6(x+3)^{-2}, & \text { for } 0 \leq x \leq 3 \\
0, & \text { otherwise }
\end{array}\right.
$$

Explain why $f(x)$ is a probability density function and use it to determine $P(0 \leq X \leq 1)$.
[6] 7. Use integration by parts to show that for any integer $n \neq 1$,

$$
\int \sec ^{n}(x) d x=\frac{\tan (x) \sec ^{n-2}(x)}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2}(x) d x .
$$

Use the reduction formula to evaluate $\int \sec ^{5}(x) d x$.

