MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 4.6

Math 1000 Worksheet

 $Fall\ 2023$

For practice only. Not to be submitted.

- 1. Use l'Hôpital's Rule to evaluate each of the following limits.
 - (a) $\lim_{x \to 0} \frac{6^x 2^x}{x}$
 - (b) $\lim_{x \to 0^+} \frac{1 \cos(\sqrt{x})}{x}$
 - (c) $\lim_{x\to 0} \frac{\sin(mx)}{\sin(nx)}$, where m and n are constants
 - (d) $\lim_{x \to \infty} \frac{\ln(1 + e^{2x})}{x}$
 - (e) $\lim_{x \to \infty} \frac{[\ln(x)]^3}{x^2}$
 - (f) $\lim_{x \to \infty} \frac{x^2 + 1}{x \ln(x)}$
 - (g) $\lim_{x \to \frac{\pi}{2}^{-}} \sec(7x)\cos(3x)$
 - (h) $\lim_{x \to 1} \left[\frac{1}{\ln(x)} \frac{1}{x 1} \right]$
 - (i) $\lim_{x\to 0^+} [\sin(x)]^{\tan(x)}$
 - $(j) \lim_{x \to \infty} (x + e^x)^{\frac{1}{x}}$
 - $(\mathbf{k}) \quad \lim_{x \to 0} [\cos(3x)]^{\frac{5}{x}}$
 - (ℓ) $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx}$, where a and b are constants