MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

For practice only. Not to be submitted.

1. Differentiate each of the following functions without using the definition of derivative.
(a) $y=2 x^{\frac{3}{4}}-\sqrt{3}$
(b) $f(x)=(2 x)^{5}$
(c) $V(r)=\frac{4}{3} \pi r^{3}$
(d) $y=4 \sqrt{x}-\frac{2}{x^{3}}-x$
(e) $f(t)=\left(3 t^{2}-1\right)\left(t^{2}+8 t\right)$
(f) $g(x)=\frac{5 x-1}{2 x}$
2. A pebble is thrown vertically downward from the roof of a tall building, 343 metres above the ground. If its initial velocity is -14.7 metres per second, its position after t seconds can be described by the function

$$
s(t)=-4.9 t^{2}-14.7 t+343 .
$$

What is the velocity of the pebble when it strikes the ground?
3. A certain object moves in a straight line such that its position varies cubically. This means that, after t seconds, its position in metres is given by a function of the form

$$
s(t)=A t^{3}+B t^{2}+C t+D
$$

It is known that the object is initially at rest and that its starting position is 0 metres. A measuring device positioned at -36 metres records the object's presence there twice, at 2 seconds and at 6 seconds.
(a) Use calculus to determine the values of the constants A, B, C and D.
(b) To two decimal places, find the moment at which the object is again at rest, and determine its position at this time.

