MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

For practice only. Not to be submitted.

1. Determine whether the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{2}+4}{2 x^{2}+4} & \text { if } x \leq-2 \\
\frac{x^{2}-4}{2 x+4} & \text { if }-2<x \leq 1 \\
\frac{x^{2}-4}{x^{2}-9 x+14} & \text { if } x>1
\end{array}\right.
$$

is continuous at the indicated point. If it is not, classify the discontinuity as removable or non-removable.
(a) $x=-2$
(b) $x=1$
(c) $x=2$
2. Find all values of the constant k which would make $f(x)$ continuous at $x=1$, given

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{2}+(k-1) x-k}{x-1} & \text { if } x \neq 1 \\
2 k+3 & \text { if } x=1
\end{array}\right.
$$

3. Find all values of the constant k which would make $f(x)$ continuous at $x=2$, given

$$
f(x)=\left\{\begin{array}{cl}
k^{2} x-5 & \text { if } x \geq 2 \\
\frac{1}{x-4} & \text { if } x<2
\end{array}\right.
$$

4. Find all values of the constant k which would make $f(x)$ continuous at $x=0$, given

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sqrt{k x^{2}+1}-1}{3 x^{2}} & \text { if } x \neq 0 \\
k+\frac{5}{6} & \text { if } x=0
\end{array}\right.
$$

