Name MUN Number

1. Differentiate each of the following functions. Make any obvious simplifications.
[5]
(a) $y=\tan ^{4}\left(e^{x}\right)$
[5] (b) $y=x^{4} \tan \left(e^{x}\right)$
[5] (c) $y=\tan \left(x^{4} e^{x}\right)$
[5] (d) $f(x)=x^{-7} 7^{x} \sec (x)$
[5] (e) $f(x)=\frac{\sin (5 x)}{\sin (5 x)+1}$
[5] (f) $y=\frac{x \cos (x)}{x^{2}-4}$
[5] 2. Find $\frac{d y}{d x}$ given that $x^{3} y^{3}=6 x+2 y$.
[5] 3. Use the limit definition of the derivative and the identity

$$
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)
$$

to prove that

$$
[\sin (x)]^{\prime}=\cos (x)
$$

