MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

TEST 2
MATHEMATICS 1000-003 October 24тн, 2023
Name \quad MUN Number
[12] 1. Use the graph of $y=f(x)$ below to determine each of the following. When asked to classify a discontinuity, you should indicate whether it is removable or non-removable.

(a) Is $f(x)$ continuous at $x=4$? If not, classify the discontinuity.
(b) Is $f(x)$ differentiable at $x=4$? If not, briefly explain why.
(c) Is $f(x)$ continuous at $x=2$? If not, classify the discontinuity.
(d) Is $f(x)$ differentiable at $x=2$? If not, briefly explain why.
(e) Is $f(x)$ continuous at $x=0$? If not, classify the discontinuity.
(f) Is $f(x)$ differentiable at $x=0$? If not, briefly explain why.
(g) Is $f(x)$ continuous at $x=-3$? If not, classify the discontinuity.
(h) Is $f(x)$ differentiable at $x=-3$? If not, briefly explain why.
[5] 2. Identify any horizontal asymptotes of the graph of $f(x)=\frac{\left(2 x^{2}+1\right)^{2}}{x^{3}(9-8 x)}$.
3. Consider the function $f(x)=x^{2}-5 x+7$.
[7] (a) Use the limit definition of the derivative to find $f^{\prime}(x)$.
[3] (b) Find the equation of the line that is tangent to the curve $y=x^{2}-5 x+7$ at $x=1$.
[13] 4. Consider the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{x+2}{x^{2}-1}, & \text { for } x<0 \\
3 x+8, & \text { for } x=0 \\
\frac{x^{2}-4 x+4}{x-2}, & \text { for } x>0
\end{array}\right.
$$

(a) Use the definition of continuity to determine whether $f(x)$ is continuous at $x=0$. If it is not, is the discontinuity removable or non-removable?
(b) Use the definition of continuity to determine all other points at which $f(x)$ is not continuous. Classify any discontinuities as removable or non-removable.

