MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

AsSIGNMENT 5
MATHEMATICS 1000
FALL 2023

SOLUTIONS

[3] 1. (a) We use the Quotient Rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left[e^{x}\right]^{\prime}\left[\sin (x)-\pi^{4}\right]-e^{x}\left[\sin (x)-\pi^{4}\right]^{\prime}}{\left[\sin (x)-\pi^{4}\right]^{2}} \\
& =\frac{e^{x}\left[\sin (x)-\pi^{4}\right]-e^{x} \cos (x)}{\left[\sin (x)-\pi^{4}\right]^{2}} \\
& =\frac{e^{x} \sin (x)-\pi^{4} e^{x}-e^{x} \cos (x)}{\left[\sin (x)-\pi^{4}\right]^{2}} .
\end{aligned}
$$

[2] (b) We simply rewrite:

$$
f(x)=\frac{\sin (x)}{\tan (x)}=\sin (x) \cdot \frac{\cos (x)}{\sin (x)}=\cos (x)
$$

so that, clearly,

$$
f^{\prime}(x)=-\sin (x)
$$

Note that we could use the Quotient Rule to obtain:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{[\sin (x)]^{\prime} \tan (x)-\sin (x)[\tan (x)]^{\prime}}{[\tan (x)]^{2}}=\frac{\cos (x) \tan (x)-\sin (x) \sec ^{2}(x)}{\tan ^{2}(x)} \\
& =\frac{\sin (x)-\sin (x) \sec ^{2}(x)}{\tan ^{2}(x)}=\frac{-\sin (x)\left[\sec ^{2}(x)-1\right]}{\tan ^{2}(x)} \\
& =\frac{-\sin (x) \tan ^{2}(x)}{\tan ^{2}(x)}=-\sin (x)
\end{aligned}
$$

using the identity $\tan ^{2}(x)+1=\sec ^{2}(x)$, but obviously this is a much more onerous approach.
(c) We use the Product Rule twice:

$$
\begin{aligned}
\frac{d}{d t}[g(t)] & =\frac{d}{d t}[\sqrt{t}] e^{t} \cos (t)+\sqrt{t} \frac{d}{d t}\left[e^{t} \cos (t)\right] \\
& =\frac{1}{2} t^{-\frac{1}{2}} e^{t} \cos (t)+\sqrt{t}\left(\frac{d}{d t}\left[e^{t}\right] \cos (t)+e^{t} \frac{d}{d t}[\cos (t)]\right) \\
& =\frac{e^{t} \cos (t)}{2 \sqrt{t}}+\sqrt{t}\left[e^{t} \cos (t)-e^{t} \sin (t)\right] \\
& =\frac{e^{t} \cos (t)}{2 \sqrt{t}}+\sqrt{t} e^{t} \cos (t)-\sqrt{t} e^{t} \sin (t)
\end{aligned}
$$

[4] (d) We use the Quotient Rule, followed by the Product Rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{[x \cot (x)]^{\prime}\left(x^{2}+1\right)-x \cot (x)\left[x^{2}+1\right]^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left([x]^{\prime} \cot (x)+x[\cot (x)]^{\prime}\right)\left(x^{2}+1\right)-2 x^{2} \cot (x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left[\cot (x)-x \csc ^{2}(x)\right]\left(x^{2}+1\right)-2 x^{2} \cot (x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\cot (x)-x^{2} \cot (x)-x^{3} \csc ^{2}(x)-x \csc ^{2}(x)}{\left(x^{2}+1\right)^{2}} .
\end{aligned}
$$

[7] 2. First note that

$$
\begin{aligned}
f^{\prime}(x) & =[\sec (x)]^{\prime} \tan (x)+\sec (x)[\tan (x)]^{\prime} \\
& =\sec (x) \tan ^{2}(x)+\sec ^{3}(x) \\
f^{\prime}\left(\frac{\pi}{3}\right) & =\sec \left(\frac{\pi}{3}\right) \tan ^{2}\left(\frac{\pi}{3}\right)+\sec ^{3}\left(\frac{\pi}{3}\right) \\
& =2(\sqrt{3})^{2}+2^{3} \\
& =14
\end{aligned}
$$

Hence the slope of the tangent line is $m_{T}=14$ and the slope of the normal line is $m_{N}=-\frac{1}{14}$. Furthermore, the point on the curve at which $x=\frac{\pi}{3}$ has y-coordinate

$$
f\left(\frac{\pi}{3}\right)=\sec \left(\frac{\pi}{3}\right) \tan \left(\frac{\pi}{3}\right)=2 \sqrt{3}
$$

Therefore the tangent line has an equation of the form

$$
\begin{aligned}
y-2 \sqrt{3} & =14\left(x-\frac{\pi}{3}\right) \\
y & =14 x+2 \sqrt{3}-\frac{14 \pi}{3} .
\end{aligned}
$$

The normal line has an equation of the form

$$
\begin{aligned}
y-2 \sqrt{3} & =-\frac{1}{14}\left(x-\frac{\pi}{3}\right) \\
y & =-\frac{1}{14} x+2 \sqrt{3}+\frac{\pi}{42} .
\end{aligned}
$$

