MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[4] 1. Note that

$$
f(x+h)=\frac{2(x+h)}{(x+h)+5}=\frac{2 x+2 h}{x+h+5},
$$

so

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 x+2 h}{x+h+5}-\frac{2 x}{x+5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2 x+2 h)(x+5)-2 x(x+h+5)}{(x+5)(x+h+5)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+2 x h+10 x+10 h-2 x^{2}-2 x h-10 x}{h(x+5)(x+h+5)} \\
& =\lim _{h \rightarrow 0} \frac{10 h}{h(x+5)(x+h+5)} \\
& =\lim _{h \rightarrow 0} \frac{10}{(x+5)(x+h+5)} \\
& =\frac{10}{(x+5)^{2}} .
\end{aligned}
$$

[4] 2. (a) Here,

$$
f(x+h)=5(x+h)-(x+h)^{3}=5 x+5 h-x^{3}-3 x^{2} h-3 x h^{2}-h^{3}
$$

so

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(5 x+5 h-x^{3}-3 x^{2} h-3 x h^{2}-h^{3}\right)-\left(5 x-x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h-3 x^{2} h-3 x h^{2}-h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(5-3 x^{2}-3 x h-h^{2}\right) \\
& =5-3 x^{2} .
\end{aligned}
$$

[2] (b) From part (a), the slope of the tangent line at $x=-1$ is $f^{\prime}(-1)=2$. Furthermore, the y-coordinate of the point at $x=-1$ is $f(-1)=-4$. Thus the tangent line has the form

$$
y=2 x+b
$$

where

$$
\begin{aligned}
-4 & =2(-1)+b \\
-2 & =b
\end{aligned}
$$

The equation of the tangent line is therefore $y=2 x-2$.
3. (a) We use the alternate definition of the derivative:

$$
f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3} \frac{f(x)-15}{x-3}
$$

From the right, this limit becomes

$$
\lim _{x \rightarrow 3^{+}} \frac{\left(2 x^{2}-3\right)-15}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}-18}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{2(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3^{+}} 2(x+3)=12 .
$$

However, from the left we have

$$
\lim _{x \rightarrow 3^{-}} \frac{\left(x^{2}+2 x\right)-15}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)(x+5)}{x-3}=\lim _{x \rightarrow 3^{-}}(x+5)=8
$$

Since the one-sided limits are not equal, the limit does not exist, and so $f(x)$ is not differentiable at $x=3$.
[5] (b) The alternative definition of the derivatives indicates that

$$
g^{\prime}(3)=\lim _{x \rightarrow 3} \frac{g(x)-g(3)}{x-3}=\lim _{x \rightarrow 3} \frac{g(x)-27}{x-3}
$$

From the right this becomes

$$
\lim _{x \rightarrow 3^{+}} \frac{\left(2 x^{2}+9\right)-27}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}-18}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{2(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3^{+}} 2(x+3)=12
$$

From the left we have

$$
\lim _{x \rightarrow 3^{-}} \frac{\left(x^{2}+6 x\right)-27}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)(x+9)}{x-3}=\lim _{x \rightarrow 3^{-}}(x+9)=12
$$

as well. Since the one-sided limits agree, we conclude that $g^{\prime}(3)=12$ and so $g(x)$ is differentiable at $x=3$.

