MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTion 4.4

Math 1000 Worksheet
FALL 2023

SOLUTIONS

1. (a) First we determine the critical points of $f(x)$. We have

$$
f^{\prime}(x)=3 x^{2}-9=3\left(x^{2}-3\right)
$$

so $f^{\prime}(x)=0$ when $x= \pm \sqrt{3}$ and $f^{\prime}(x)$ is never undefined. Hence $x= \pm \sqrt{3}$ are the only critical points. Next we evaluate $f(x)$ at the critical points and at the endpoints $x=-4$ and $x=3$:

$$
\begin{gathered}
f(-\sqrt{3})=6 \sqrt{3} \approx 10.4, \quad f(\sqrt{3})=-6 \sqrt{3} \approx-10.4 \\
f(-4)=-28, \quad f(3)=0
\end{gathered}
$$

Hence the maximum value of $f(x)$ on $-4 \leq x \leq 3$ is $6 \sqrt{3}$ and the minimum value is -28 .
(b) First we identify the critical points. Note that

$$
f^{\prime}(x)=\frac{(2 x)(x+1)-(1)\left(x^{2}+3\right)}{(x+1)^{2}}=\frac{(x+3)(x-1)}{(x+1)^{2}}
$$

which is zero for $x=1$ and $x=-3$, and fails to exist at $x=-1$. For the interval $0 \leq x \leq 4$, then, the only critical point is $x=1$, for which $f(1)=2$. Checking the endpoints, we have $f(0)=3$ and $f(4)=\frac{19}{5}=3.8$. Hence the maximum value of $f(x)$ is $\frac{19}{5}$, and the minimum value is 2 .
(c) We again begin by determining the critical points of $f(x)$, observing that

$$
f^{\prime}(x)=\sec (x) \tan (x)
$$

Setting $f^{\prime}(x)=0$ gives $x=0$, and $f^{\prime}(x)$ never fails to exist on the given interval (though it does fail to exist for many other values of x). Hence $x=0$ is the only critical point. We evaluate $f(x)$ there and at the endpoints, giving

$$
f(0)=1, \quad f\left(-\frac{\pi}{6}\right)=\frac{2 \sqrt{3}}{3} \approx 1.15, \quad f\left(\frac{\pi}{3}\right)=2
$$

Thus the maximum value of $f(x)$ on the given interval is 2 and the minimum value is 1.
(d) As before, we find the critical points. Differentiation gives

$$
f^{\prime}(x)=1+2 \sin (x)
$$

which fails to exist nowhere, and is zero for $x=-\frac{\pi}{6}$ and $x=-\frac{5 \pi}{6}$, both of which are on the interval $-\pi \leq x \leq \pi$. Note that

$$
f\left(-\frac{\pi}{6}\right)=-\frac{\pi}{6}-2 \cos \left(-\frac{\pi}{6}\right) \approx-2.26
$$

and

$$
f\left(-\frac{5 \pi}{6}\right)=-\frac{5 \pi}{6}-2 \cos \left(-\frac{5 \pi}{6}\right) \approx-0.89
$$

At the endpoints,

$$
f(-\pi)=-\pi-2 \cos (-\pi) \approx-1.14 \quad \text { and } \quad f(\pi)=\pi-2 \cos (\pi) \approx 5.14
$$

Hence the maximum value of $f(x)$ on $-\pi \leq x \leq \pi$ is approximately 5.14 , while the minimum value is about -2.26 .
2. (a) Observe that

$$
f^{\prime}(x)=12 x-6 x^{2}=6 x(2-x)
$$

This is never undefined, and equals zero for $x=0$ and $x=2$, of which only the latter lies on the indicated interval. Since the requirements of the Second Derivative Test are satisfied, we find

$$
f^{\prime \prime}(x)=12-12 x \quad \Longrightarrow \quad f^{\prime \prime}(2)=-12<0
$$

Thus $x=2$ is the absolute maximum, and the maximum value of $f(x)$ on the interval $1<x<7$ is $f(2)=10$.
(b) From part (a), we know that $x=0$ is the only critical point on the interval $-7<x<1$, and $f^{\prime \prime}(0)=12>0$. Thus $x=0$ is the absolute minimum, and the minimum value of $f(x)$ on this interval is $f(0)=2$.
3. We have

$$
f^{\prime}(x)=\frac{12+16 x-3 x^{2}}{(3 x-8)^{2}}
$$

This is undefined for $x=\frac{8}{3}$, which is not on the given interval. It is zero when $x=6$ and $x=-\frac{2}{3}$, of which only the latter is on $-2<x<2$. Since we have only one critical point, we can use the Second Derivative Test. Observe that

$$
f^{\prime \prime}(x)=-\frac{200}{(3 x-8)^{3}} \quad \Longrightarrow \quad f^{\prime \prime}\left(-\frac{2}{3}\right)=\frac{1}{5}>0
$$

Thus $x=-\frac{2}{3}$ is the absolute minimum, and the minimum value of $f(x)$ on this interval is $f\left(-\frac{2}{3}\right)=\frac{1}{5}$.

